

Fundamentals of Geometric Dimensioning & Tolerancing (Based on ASME Y14.5M-1994)

2nd Edition

Answer Guide

Chapters listed below:

- + Chapter 1
- + Chapter 2
- ♦ Chapter 3
- ♦ Chapter 4
- Chapter 5
- SAFIN ♦ Chapter 6

- Chapter 7
- ♦ Chapter 8
- ♦ Chapter 9
- ♦ Chapter 10
- ◆ Chapter 11
- ♦ Chapter 12

CHAPTER ONE: QUESTIONS AND PROBLEMS

- 1. Limit
- 2. Plus-minus
- 3. Plus-minus
- 4. Limit
- 5. Equal
- 6. Unilateral
- 7. Unequal
- 8. The decimal points and zero are omitted.
- 9. A zero precedes the decimal point 10. Max/Min And its measured This dimension

	Dimension	Max/Min limits	And its measured value was	This dimension Accepted	on would be Rejected	Why
ſ	А	13.52 13.5	13.52001		х	over size
ſ	В	98 94	93.9999		х	under size
	С	6.2 6	6.27001		х	over size
	D	40.2 39.2	40.1999	x		within limits
	Е	16.8 16.2	16.80	x		within limits

- $\begin{array}{ccc} 11. & \underline{ASME} & American \ Society \ of \ Mechanical \ Engineers \\ \underline{Y14.5} & The \ number \ of \ the \ standard \end{array}$
 - <u>M</u> Metric
 - 1994 The year the standard was approved
- 12. Coordinate tolerancing is a dimensioning system where a part feature is located (or defined) by means of rectangular dimensions with given tolerances.
- 13. a. Square tolerance zones
 - b. Fixed-size tolerance zones
 - c. Ambiguous instructions for inspection
- 14. Geometric tolerancing raises product costs.

CHAPTER TWO: QUESTIONS AND PROBLEMS

- 3. Actual local size is the value of any individual distance at any cross section of a feature.
- 4. In a feature of size, the surfaces or elements must be opposed.
- 5. There are two types of features of size: internal and external.
- 6. Actual mating envelope is a **variable** value.
- 7. The largest perfect feature counterpart that can be inscribed about the feature
- 8. The smallest diameter of a hole is its maximum material condition.
- 9. When a radius is specified, flats or reversals are allowed.
- 10. Non FOS

1.

- 11. A **planar** FOS is a FOS that contains two parallel plane surfaces.
- 12. A radius without flats and reversals is referred to as a **controlled radius**.
- 13. The five types of geometric characteristic symbols are: Form, orientation, profile, runout, and location
- 14. a. Geometric characteristic portion
- c. Datum reference portion

b. Tolerance portion

istribution

CHAPTER THREE: QUESTIONS AND PROBLEMS

- 1. Perfect form at MMC
- 2. a. Apply a straightness tolerance to a FOS.
- b. Apply a special note like, "Perfect form at MMC not required" to a FOS.

- 4. 20.4
- 5. 9.8
- 6. The titleblock tolerance 7. If dimension A The allowable

If dimension A was	The allowable form error on surface B is
12.8	0
12.7	0.1
12.6	0.2
12.5	0.3
12.4	0.4
12.3	0.5
12.2	0.6

- 8. (1) Pass the part through a gage with an opening equal to the MMC of the FOS(2) Two-point check with an instrument like a caliper
- 9. RFS applies with respect to the individual tolerance, datum reference, or both where no modifying symbol is specified.
- 10. A numerical value used to describe the theoretically exact size, true profile, orientation, or location of a feature of size or datum target

torpistribution

11. a. To define theoretically exact part features

b. To define datum targets

- 12. Virtual condition: a condition (worst-case) boundary generated by the collective effects of a FOS specified at MMC or LMC and the geometric tolerance for that material condition.
- 13. Bonus tolerance: an additional tolerance for a geometric control
- 14. Inner boundary: a worst-case boundary generated by the smallest feature minus the stated geometric tolerance (and any additional tolerance, if applicable)
- 15. Outer boundary: a worst-case boundary generated by the largest feature plus the stated geometric tolerance (and any additional tolerance, if applicable)
- 16. A general term to refer to the extreme boundary for a FOS that is the worst case for assembly

17.	7. Use N/A for not applicable			If a FOS	dimensior	n is identified,	If a feat	If a feature control frame is identified		
		Letter identifies a		Rule #1	Applies		It applies to a		The amount of	
	Letter	FOS Dimension	Non-FOS Dimension	Feature Control Frame	YES	NO	VC, OB, or IB is	Feature	FOS	bonus tolerance permissible is
	А			 ✓ 				✓		0
	В	 ✓ 			~		63			
	С			✓				~		0
	D			 ✓ 				✓		0
	Е	✓			~		4.0			
	F			 ✓ 					~	0.4
	G		✓							
	н			 ✓ 				 ✓ 		0
	1	 ✓ 				 ✓ 	37			
	J			 ✓ 					~	0.6
	к	✓			~		29.1			
	L			✓					√	1.0

CHAPTER FOUR: QUESTIONS AND PROBLEMS

- 1. Flatness is the condition where a surface has all of its elements in one plane.
- 2. Two parallel planes; the distance between the planes is equal to the flatness tolerance value.
- 3. The high points of the toleranced surface locate the first plane of a flatness tolerance zone.
- 4. 0.4
- 5. 0.4
- 6. a. Legal
 - b. Illegal; MMC modifier not allowed
 - c. Illegal; datum reference not allowed
 - d. Illegal; \emptyset modifier not allowed
- 7. Surface A=0.1 Surface B=0.4
- 8. 22.2
- 9. No; It must be a refinement of the size tolerance.
- 10. No; the flatness on surface "A" is controlled by the flatness symbol.

11.

If the part was	The flatness error of surface <i>B</i> would be limited to	The flatness error of surface A would be limited to
At MMC	0	0
At LMC	0.4	0.1
At 22.0	0.2	0.1

12. No

- 13. By contacting the toleranced surface against a surface plate and measuring the gap between the surface, the plate and the part surface
- 14. Straightness is the condition where each line element (axis or centerplane) is a straight line.
- 15. Two parallel lines 0.05 apart
- 16. 12.4
- 17. Rule #1 and the size dimension
- 18. Lay the pin on a surface plate and measure the gap between the pin surface and the surface plate.
- 19. a. Legal
 - b. Illegal; MMC modifier not allowed on a surface
 - c. Illegal; datum reference not allowed
- d. Illegal; Ø modifier not allowed

Dimension at letter	Is the straigh applie Surface?		The VC, OB, or IB of the FOS is	Does Rule #1 apply to the FOS?
А		x	17.5	NO
В	x		N/A	N/A
С		х	3.35	NO
D		x	28.4	NO
E		х	3.9	NO
F	x		N/A	N/A
G		x	22	NO

- 21. Rule #1 and the size dimension
- 22. 12.4
- 23. B; E; G; I

tribution

25. Circularity is a condition where all the points of a surface of revolution are equidistant from the axis.

1 80

- 26. Two coaxial circles with a radial distance between them equal to the circularity tolerance value
- 27. Rule #1 and the size dimension
- 28. 0.04
- 29. A; B; F
- 30. a. Illegal; \emptyset modifier not allowed
 - b. Illegal; (S) modifier not allowed
 - c. Legal
 - d. Illegal; datum reference not allowed

31.	Diameter	WCB	Max circularity error possible	Max straightness of axis error possible	Max straightness of line element error possible	Rule #1 applies (YES/NO)
	А	9.8	0.8	0.8	0.8	YES
	В	14.9	0.1	0.9	0.9	NO
	с	10.4	0.04	0.04	0.04	YES
	D	20.7	0.05	0.3	0.3	NO
	E	5.8	0.2	0.5	0.5	NO
	F	18.6	0.02	0.4	0.4	YES

- 32. By comparing an enlarged outline of the circular cross-section to a set of concentric circles
- 33. Cylindricity is the condition of a surface of revolution in which all points of the surface are equidistant from a common axis.
- 34. Two coaxial cylinders with a radial distance between them, equal to the cylindricity tolerance value
- 35. Rule #1 and the size dimension
- 36. 0.04

37. A; C; F

- 38. A sampling of points of the part's cylindrical surface are compared to two coaxial cylinders (similar to circularity, but in 3-D)
- 39. A. Illegal, no datum reference allowed
 - B. Legal
 - C. Illegal, cannot use the LMC modifier
 - D. Illegal, cannot use the diameter modifier

40.

Diameter	Rule #1 applies (YES/NO)	WCB	Max straightness of axis error possible	Max circularity error possible	Max cylindricity error possible
A	NO	10	0.4	0.2	0.2
В	YES	16.2	0.2	0.03	0.2
С	YES	24.2	0.05	0.05	0.05
D	YES	12.82	0.02	0.02	0.02

41.

CHAPTER FIVE: QUESTIONS AND PROBLEMS

- 1. A system of symbols & rules that communicate to the drawing user how measurements are to be made
- 2. a. Aids in making dimensional measurements as intended by the designer
 - b. Aids in making repeatable dimensional measurements
 - c. Aids in communicating part functional relationships
- 3. An assumed plane, axis, or point from which a measurement is made.
- 4. a. Does not clearly communicate which part surfaces should touch the inspection equipment
 - b. Does not communicate the sequence to bring the part into contact with the inspection equipment.
 - a. Good parts rejected
 - b. Bad parts accepted
- 6. A theoretical plane, point, or axis from which dimensional measurements are made
- 7. A part feature that contacts a datum
- 8. A perfect plane
- 9.

- 10. a. Connect the base of the datum symbol on the edge view of a surface or on an extension line of a surface
 - b. Connect the base of the datum symbol to an extension line of a dimension. The base must be offset from the dimension lines.
- 11. How the part is mounted and located in its assembly
- 12. A set of three datum planes mutually perpendicular
- 13. It is not shown; the general tolerance for angles either from the titleblock tolerances or a general note
- 14. a. Movement along the X axis
 - b. Movement along the Y axis
 - c. Movement along the Z axis
 - d. Rotation around the X axis
 - e. Rotation around the Y axis
 - f. Rotation around the Z axis
- 15. a. Datum Plane E <u>3</u>
 - b. Datum Plane B $\overline{2}$
 - c. Datum Plane A $\overline{\underline{1}}$
- 16. a. Movement along the Z axis
- b. Rotation around the X axis
 - c. Rotation around the Y axis
- 17. a. Rotation around the Z axis
- b. Movement along the Y axis
- 18. Two or more datum features which are on the same plane

- 20. A geometric tolerance associated with the dimension, will reference the datum reference frame
- 21. Symbols that describe the shape, size, and location of gage elements that are used to establish datum planes
- 22. a. Whenever it is not practical to use the whole surface as a datum feature
 - b. Whenever the designer suspects the part may rock (or wobble) when the part contacts the datum plane
- 23. To ensure there will be minimum variation between gages

tribution

- 25. 1. Basic dimensions should be used to define and locate the datum targets.
 - 2. The datum reference frame must restrain the part in all six degrees of freedom.
 - 3. The part dimensioning must ensure that the part will rest in the gage in only 1 orientation/location

28. No; The flatness is checked from the high points of the surface.

- 11. The datum feature simulator (gage) is a fixed size.
- 12. The allowable movement between the part datum feature and the gage is called datum shift.
- 13. a. Where a straightness control is applied to a datum feature
 - b. Where a secondary or tertiary datum feature of size in the same datum reference frame are controlled by a location or orientation control with respect to each other
- 14. When the (M) modifier is shown in the datum portion of the feature control frame

Using the drawing from question	The Maximum Permissable datum shift is
15	0.2
16	0.4
17	0.5
18	0.5
19	0.4

CHAPTER SEVEN: QUESTIONS AND PROBLEMS

1. Two parallel planes 0.2 apart

The flatness of surface	Is controlled by	Is limited to
В	Rule #1 and Size dim.	0.6
С	Flatness Control	0.1
D	Perpendicularity Control	0.2
Е	Rule #1 and Size dim.	0.6

3. A general note

2.

- 4. 90° basic to datum plane A
- tripution 5. The tolerance zone would be oriented to both datum plane A and datum plane B.
- 6. a. Two parallel planes
 - b. A cylinder
- 6. Any three of the four statements below
 - 1. The tolerance zone is two parallel planes.
 - 2. The tolerance value is the distance between the planes.
 - 3. All elements of the surface must be within the tol. zone.
 - 4. The flatness of the surface is also controlled.
- 8. A cylinder 0.1 dia at MMC and 0.3 dia at LMC. 9.

tolerance possible is	The perpendicularity tolerance zone diameter would be
0	0.1
0.1	0.2
0.2	0.3
	is 0 0.1

10

- 11. a. A bonus tolerance is permissible
 - b. A fixed gage may be used.
 - c. The axis or centerplane must be within the tolerance zone
- 12. a. Legal
 - b. Legal
 - c. Legal
 - d. Illegal no RFS modifier
 - e. Legal
 - f. Illegal needs a datum reference
- 13. a. Two parallel planes
 - b. A cylinder
- 14. Any three of the four statements below
 - 1. Tolerance zone is two parallel planes
 - 2. Tolerance zone is oriented to datum planes with a basic angle
 - 3. All elements of the surface must be within the tol. zone.
 - 4. Flatness also controlled within the tolerance value
- 15. Two parallel planes 0.1 apart.
- 16. The 30° basic angle.

17.

The flatness of surface	Is controlled by	Is limited to
В	Rule #1 and size dim.	0.2
С	Angularity control	0.1

- 18. Yes
- 19. Yes
- 20. Yes
- 21. a. Tolerance zone is usually a cylinder
 - b. Basic angle orients the tolerance zone in one direction
 - c. Implied basic angle applies in the other direction
- 22. a. 2 parallel planes
 - b. A cylinder
- 23. Two parallel planes 0.1 apart
- 24. т

	The flatness of surface	Is Controlled by	is limited to
	В	Rule #1 and size dim.	0.6
	С	Flatness Control	0.1
	D	Perpendicularity Control	0.2
ſ	E	Parallelism Control	0.1

- 25. The dimension between the surfaces
- 26. Oriented parallel to datum plane A; located within the 36.0 36.6 dimension
- 27. 0.1
- 28. 0.6
- 29. 2 parallel planes 0.2 apart
- 30. It denotes that only the tangent plane of the toleranced surface needs to be within the tolerance zone.
- 31. a. Illegal; the tolerance value is too large.
 - b. Illegal; the toleranced feature is perpendicular to datum referenced.
 - c. Legal
 - d. Legal
 - e. Illegal; the toleranced feature is perpendicular to the datum referenced.
 - f. Illegal; cannot be parallel to itself

tribution

CHAPTER EIGHT: QUESTIONS AND PROBLEMS

- 1. A geometric tolerance that defines the location tolerance of a feature of size from its true position
- 2. The theoretically exact location of a FOS as defined by basic dimensions
- 3. a. Implied basic 90° angles
- b. Implied basic zero dimension
- 4. a. Cylindrical tolerance zones
 - b. Additional tolerance
 - c. Prevents tolerance accumulation
- 5. a. The distance between the features of size b. The location of the features of size
- d. Protects the part function

- 6. A theoretical boundary limits the location of the surfaces of a feature of size.
- 7. The axis or centerplane of a FOS must be within the tolerance zone.
- 8. A 0.2 diameter cylindrical tolerance zone
- 9. Two parallel planes 0.1 apart
- 10. A 0.3 diameter cylinder

12.

13.

- 11. a. Boundary tolerance zone forD
- b. Bonus tolerance is permissible

υ.	implied bas	ie zero unnena	51011				
a.	Cylindrical to	olerance zones	5	d. Pr	otects the part function		
b.	Additional tolerancee. Lower manufacturing costsPrevents tolerance accumulationf. Permits the use of functional gages						
c.	Prevents tole	rance accumu	lation	f. Pe	rmits the use of functional gages		
a.	The distance	between the	features of siz	e c. Tł	e coaxiality of features of size		
b.	The location	of the feature	es of size	d. Tl	ne symmetry of features of size		
A t	heoretical bo	undary limits	the location o	of the surface	s of a feature of size.		
Th	he axis or centerplane of a FOS must be within the tolerance zone.						
Α	A 0.2 diameter cylindrical tolerance zone						
Τv	vo parallel pl	anes 0.1 apart					
Α	0.3 diameter	cylinder					
a.	Boundary to	olerance zone	c.	A functiona	al gage may be used.		
b.	Bonus toler	ance is permis	ssible.				
	For the TOP	The shape of the	The max	The max			
	callout labeled	tolerance zone is	permissible bonus is	permissible datum shift is			
		10					
	A	39.0 boundary	0.6	0.3	\$O'		
	6						
	В	11.6 dia. cylinder	0.4	0.3			
	С	3.9 dia. cylinder	0.1	0.45			
	0		0.1	0.40			
	For the TOP	The shape of the	The max	The max			
	callout labeled	tolerance zone	permissible bonus is	permissible datum shift is			
		IS	bonus is	datum shirt is	_		
	А	2.8 dia. boundary	0.6	0.6			
					_		
	В	42.3 dia. cylinder	1.0	0.6			
	С	5.9 boundary	0.8	0.6			
	1						

- 14. a. Illegal; no datum reference
 - b. Legal
 - c. Illegal; cannot be applied to a surface
 - d. Illegal; cannot use a toleranced dimension to A (see "Design Tip" on page 162), and datum reference B must be referenced at MMC
- 15. A gage that verifies functional requirements of part features as defined by the geometric tolerances.
- 16. a. The gage represents the worst case mating part
 - b. Parts can be verified quickly
 - c. Gage is economical to produce
 - d. No special skills
- 15. A sketch of a functional gage

CHAPTER NINE: QUESTIONS AND PROBLEMS

12. 0.6

13.	Toleranced Hole AME	-			
	4.6	0.2			
	4.4	0.4			
	4.2	0.6			
	4.0	0.8			
14. 4.0					
15. 4.0					

15. 4.0					
16.	Hole AME	⊕ Tol. Dia.	Bonus Tol.	Total Location Tol. Dia.	
	4.0	0	0	0	
	4.2	0	0.2	0.2	
	4.4	0	0.4	0.4	
	4.6	0	0.6	0.6	
	4.8	0	0.8	0.8	

ipution 17. A tolerance stack is a calculation used to find the extreme max. or min. distance on a part. Jot for Di

- 18. Max. X = 2.3 Min. X = 1.3
- 19. Max. X = 16.6 Min. X = 15.4

20.
$$H = F + 2T$$
 and $T = H - F$

- 0.7 (for cover) 21. 0.7 (for housing)
- 22. 1.4
- 23. 0.3
- 0.3
- 24. 0.3
- 0.3

CHAPTER TEN: QUESTIONS AND PROBLEMS

- 1. A cylinder coaxial with the datum axis
- 2. Two parallel planes centered about the datum centerplane

2

- 3. The concentricity control
- 4. A 0.02 diameter cylinder coaxial with datum axis A
- 5. Yes
- 6. Median points
- 7. 0.01 8.

CONCEPT	CONCENTRICITY	TOTAL RUNOUT	TOP(RFS)
Describe the shape of the tolerance zone?	A cylinder	Two coaxial cylinders	A cylinder
What characteristic of the toleranced feature must be within the tolerance zone?	Median points of two point measurements	Surface elements of the dia.	Axis of the AME
Does rule #1 still apply to the toleranced feature?	Yes	Yes	Yes
What type of characteristics of the toleranced feature are being controlled?	Location, orientation	Location, orientation, form	Location, orientation

- 9. a. Illegal; dia. symbol missing
 - b. Illegal; cannot use projected tolerance zone modifier
 - c. Illegal; cannot use RFS modifier
 - d. Legal
 - e. Illegal; cannot use MMC modifier

- 10. A median point is the mid-point of a two point measurement.
- 11. Two parallel planes 0.4 apart
- 12. Yes
- 13. Median points

14. 0.2 15.

16.

CONCEPT	SYMMETRY	POSITION (RFS)
Tolerance zone shape	Two parallel planes	Two parallel planes
What characteristic of the toleranced feature must be within the tolerance zone?	Median points of two point measurement	Centerplane of AME
Does Rule #1 apply to the toleranced feature?	Yes	Yes
What type of characteristics of the toleranced feature are being controlled?	Location; orientation	Location; orientation
A 0.5 A	Legal	

B = 0.5 M A Illegal; cannot use MMC modifier C = 0.5 S AS Illegal; cannot use RFS modifier D _ 0.5 (L) A(L) Illegal; cannot use LMC modifier jet E _ 0.5 @10 A Illegal; cannot use projected tolerance zone modifier

> © SAE International 400 Commonwealth Drive, Warrendale, PA 15096 www.sae.org/gdt • 1-800-866-0909 • 1-734-744-5940

CHAPTER ELEVEN: QUESTIONS AND PROBLEMS

- 1. A composite tolerance that is to control the functional relationship (location, orientation, and form) of one or more features to a datum axis
- 2. a. A single diameter of sufficient length c. A surface and a diameter at right angles
 - b. Two coaxial dias. a sufficient distance apart to create a single datum axis with centers located on the datum axis
 - c. A surface and a diameter at right angles
- 3. Two coaxial circles
- 4. a. Axis location c. Form error (roundness)
- b. Axis orientation

5.

	DIA	MAX POSSIBLE AXIS OFFSET FROM DATUM AXIS A	
	В	0.1	
	с	0.15	
	D	0.4	

6.

QUESTION	APPLIES TO			
QUESTION	DIA B	DIA C	DIA D	DIA E
The size of the diameter is limited to?	0.4	0.1	0.2	0.2
The roundness of the diameter is limited to?	0.3	0.1	0.2	0.2
The maximum offset between the diameter axis and datum axis A is	0.15	0.05	0.5	0.1
Describe the tolerance zone for the runout controls applied to the diameter.	2 coaxial circles with 0.3 radial seperation	2 coaxial circles with 0.1 radial seperation	2 coaxial circles with 1.0 radial seperation	2 coaxial circles with 0.2 radial seperatior
How many places should the runout control be checked on this diameter?	Insp	ector's judge	ment	
What is the outer boundary (virtual condition) of this diameter?	6.7	20.3	13.6	18.4

- 7. a. Legal c. Illegal; cannot use MMC modifier
 - b. Legal d. Illegal; cannot use diameter modifier
- 8. A composite control affecting the form, orientation, and location of all surface elements simultaneously of a diameter (or surface) relative to a datum axis
- 9. Two coaxial cylinders whose centers are located on the datum axis
- 10. a. Axis offset d. Straightness
 - b. Axis orientation e. Circularity

c. Taper

- 11. a. Illegal; cannot use diameter modifierb. Illegal; cannot use projected tolerance zone modifierd. Legal
- 12. B = 0.05
 - C = 1.0
- D = 0.5

0.5				
QUESTION	APPLIES TO			
QUEUTION	DIA B	DIA C	DIA D	DIA E
The size of the diameter is limited to?	0.2	0.4	0.2	0.2
The roundness of the diameter is limited to?	0.2	0.4	0.06	0.2
The maximum offset between the diameter axis and datum axis A is	0.6	0.2	0.03	N/A
Describe the tolerance zone for the runout controls applied to the diameter.	2 coaxial cylinders with 1.2 radial seperation	2 coaxial cylinders with 0.4 radial seperation	2 coaxial cylinders with 0.06 radial seperation	N/A
What is the outer boundary (virtual condition) of this diameter?	25.4	13.2	14.66	10.2

14. A; B; D; E

15.	DISTANCE	MAX	MIN	
	А	2.75	1.25	
	В	2.60	1.50	
	С	3.10	1.10	
	D	1.10	0.85	
	E	2.15	1.05	

ution

CHAPTER TWELVE: QUESTIONS AND PROBLEMS

- 1. Form
- 2. Datum related feature control
- 3. The exact profile of a part as described by basic dimensions
- 4. a. Size c. Orientation
- b. Location d. Form
- 5. A uniform boundary 0.8 wide, centered around the true profile
- 6. A uniform boundary 0.8 wide, offset inward from the true profile

11.

16.

This profile callout Controls the (size, location, orientation, form)		Within	Relative to
1.5 A B C	Location (or size)	1.5	ABC
1.0 B	Orientation	1.0	В
0.2	Form	0.2	

- 12. a. Legal
 - b. Illegal; needs basic dimension to define true profilec. Illegal; tolerance value too large

e. Legal

- f. Illegal; needs basic dimension to define true profile
- g. Illegal; cannot use an MMC modifier

- d. Legal
- 13. Two uniform lines at any cross section of the surface.
- 14. Callout 1 Two cones 0.6 apart and centered around the true profile

Callout 2 - Two line elements 0.1 apart, located within the tolerance zone of the upper callout, oriented relative to datum axis A

15. a. Illegal - in conflict with the location dimension.

b.	Legal		
	DISTANCE	МАХ	MIN
	А	28.5	27.5
	В	42	40
	С	28.4	27.6
	D	2.4	1.6
	E	30.8	29.2

c. Illegal - tolerance value too large

d. Legal

