- 1. One role of a metrologist is to:
 - a. Develop the quality manual
 - b. Calibrate inspection instruments
 - c. Create the inspection report
 - d. Make accept or reject decisions
- 2. One role of an inspector is to:
 - a. Create the measurement plan
 - b. Develop the quality manual
 - (c.) Implement the measurement plan
 - d. Determine what relationships to measure
- 3. In this course, the definition for the term "quality" involves:
 - a. Having near nominal precision
 - b. Conformance to specifications
 - c. Being of superior characteristics
 - d. Having a high capability index CpK
- 4. Inspection is important because it ensures that:
 - a. Engineering designs are complete
 - b. Correct processes are in place
 - (c.) Customers are satisfied
 - d. None of the above

- 5. Which is <u>not</u> a part of a quality manual?
 - a. Defining the responsibility of each department
 - b. Defining training and qualification requirements of inspectors
 - c.) Defining sample sizes and frequency of inspections
 - d. Defining the means of distribution
- 6. Metrology is:
 - a. The study of a part's dimensional variations
 - b. The process of implementing the measurement plan
 - c.) The science of measurement and its application
 - d. The practice of using judgment to determine if parts pass or fail
- 7. Inspection is:
 - a. The practice of providing oversight for manufacturing process variations over time
 - b. The process of creating the measurement plan and determining measurement uncertainty
 - c. The practical aspects of measurement and uncertainty as directed by the quality manual
 - d. The process of measuring or otherwise comparing part characteristics to drawing specifications

- 8. The four types of inspection are final, process, receiving, and:
 - a. Partial
 - b. Preliminary
 - c. Secondary
 - d.) Batch
- 9. The purpose of a quality manual is to define responsibilities and authorities for:
 - a. The plant
 - b. Inspectors
 - (c.) The quality system
 - d. Inspection
- 10. An inspector:
 - (a.) Conducts tests
 - b. Calibrates equipment
 - c. Creates measurement plans
 - d. None of the above

- 1. The smallest change in a quantity being measured that causes a perceptible change in the corresponding indication is called:
 - a. Accuracy of an instrument
 - b. Precision of an instrument
 - (c.) Resolution of an instrument
 - d. None of the above
- 2. Where measurement uncertainty is estimated using statistical methods, it is referred to as:
 - a.) Type A
 - b. Type B
 - c. Expanded
 - d. Combined
- 3. What does measurement uncertainty mean?
 - a. Doubt about how to measure
 - (b) Doubt about the measurement result
 - c. Doubt about where to measure
 - d. None of the above

- 4. Understanding the amount of uncertainty is important because it allows:
 - (a.) Guard bands to be optimized
 - b. Inspectors to do a better job
 - c. More good parts to pass inspection
 - d. None of the above
- 5. What is the definition of "measurand"?
 - a. The result of a measurement
 - b. Parameter of a measurement
 - (c.) A quantity intended to be measured
 - d. None of the above
- 6. Common contributors to measurement uncertainty are the operator, the drawing specification, and:
 - (a.) Part
 - b. The drawing creator
 - c. Calculation errors made by the inspector
 - d. None of the above

- 7. Physical differences contribute to which measurement uncertainty category?
 - a. Environment
 - b. Measurement setup
 - c. Measurement equipment
 - d.) Operator
- 8. What is a decision rule?
 - a. A documented rule describing how uncertainty is allocated in measurements
 - b. A documented policy describing when deviations are appropriate
 - c. A policy to guide inspectors in documenting measured values
 - d. None of the above
- 9. The choice of a decision rule is based on:
 - a. The ability to rework nonconforming parts
 - b. Measurement equipment resolution
 - c. Management acceptance of missed quotas
 - d. Cost of rejecting in tolerance parts vs. cost of acceptance out-of-tolerance parts

- 10. A guard band contains:
 - (a.) The uncertainty of the measurement
 - b. The allowable tolerance
 - c. A safety factor
 - d. None of the above
- 11. What is a simple rejection?
 - a. The rejection zone consists of all values inside the guard band
 - b. Measurements inside this zone are rejected even if they are inside the specification
 - (c.) The rejection zone consists of all values outside of the specification zone
 - d. None of the above
- 12. The location and decision outcome of any _____ must be documented in the decision rule.
 - a. Relaxed acceptance zone
 - b. Relaxed rejection zone
 - c.) Transition zone
 - d. None of the above

- 13. The resolution of the measurement equipment is important for:
 - (a.) Calculating uncertainty
 - b. Establishing gage R& R values
 - c. Selecting the decision rule
 - d. None of the above
- 14. T F Simple rejection means any measurement result that lies outside of the specification zone may be rejected.
- 15. T F Relaxed acceptance with stringent rejection is one of the four decision rules.
- 16. T F A decision rule must document the location of the acceptance, rejection, and transition zones.
- 17. T F Using the stringent acceptance rule lowers manufacturing cost.
- 18. (T) F A decision rule must include a decision for any measurement result that lies within the transition zone.

- 1. The three categories of inspection tools are:
 - a. GO/NOGO, functional, and feeler
 - b. Attribute, variables, and algorithmic
 - c. Touch, non-contact scanning, and vision
 - d. None of the above
- 2. Which type of measurement provides a measured value directly from the inspection tool?
 - a. Attribute
 - b. Functional
 - c. Algorithmic
 - d.) None of the above
- 3. Which inspection tool is commonly used to make an attribute measurement?
 - a. Laser tracker
 - b. Calipers
 - c. Air gage
 - d.) Plug gage

- 4. A variable measurement may be affected by:
 - a. Class of tolerance
 - b. Tolerance accumulation
 - c. Fixture loads
 - d. Excessive play
- 5. A digital micrometer is typically considered to be what type of inspection tool?
 - a. Attribute
 - b.) Variables
 - c. Algorithmic
 - d. None of the above
- 6. A "least squares" algorithm is commonly used with:
 - (a.) A CMM
 - b. A digital height gage
 - c. An optical comparator
 - d. None of the above

- 7. A basic operating principle of an attribute gage is that the gage should:
 - (a.) Go into or over the part feature without excessive force
 - b. Be made of the same material as the part
 - c. Never reject a good part
 - d. None of the above
- 8. What is a basic principle of algorithmic type inspection tools?
 - a. They are faster than attribute or variable measurement tools
 - b. They require the part to be clamped to the table for inspection
 - (c.) They collect a set of data points
 - d. None of the above
- 9. What is a basic principle of variable measurement type inspection tools?
 - a. They require a skilled operator to align or orient the measurement device to the workpiece correctly
 - b. They are used to collect a set of data points for use in an algorithm
 - c. They are not affected by Abbe error, backlash, or friction
 - d. None of the above

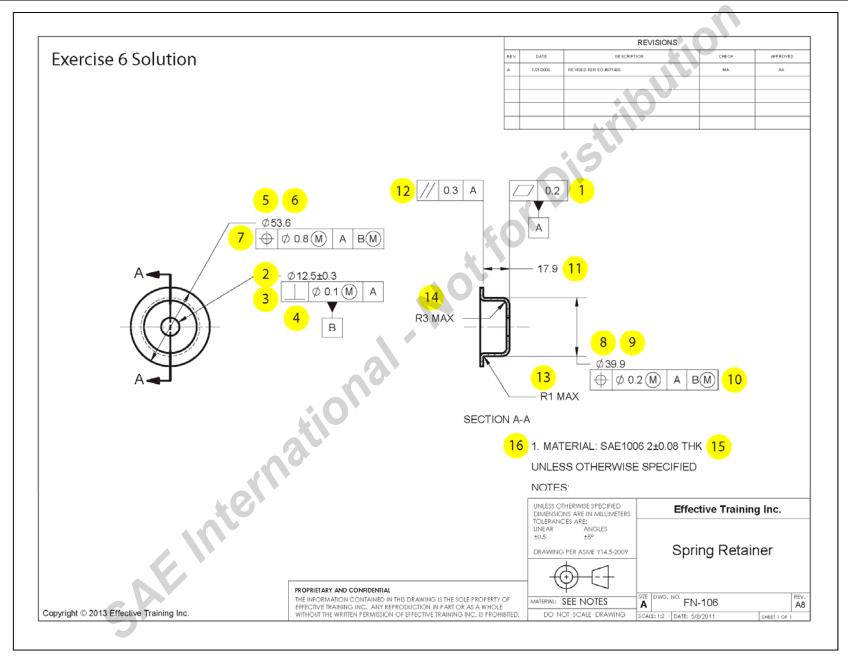
- 10. An optical comparator is commonly considered to be what type of inspection tool?
 - a. Algorithmic
 - b. Attribute
 - c. Variable measurement
 - d.) Both B and C
- 11. T F A ring gage is a type of attribute inspection tool.
- 12. T (F) Attribute data includes a value of the measurement.
- 13. T F The tolerance policy used for a functional gage should be stated in the measurement plan.
- 14. T F An algorithmic measurement device costs less than a variable measurement device.
- 15. T F An optical comparator is often used as an attribute measurement device.

- 1. Which Y14.5 concept supports the use of an attribute gage?
 - (a.) Bonus tolerance
 - b. RMB
 - c. Position tolerance
 - d. None of the above
- 2. How is a round hole of a workpiece simulated in a functional gage?
 - a. With a conical-shaped pin
 - b. With a diamond-shaped pin
 - c. With a set of two opposed points
 - (d.) With a full-form cylindrical pin
- 3. An attribute gage cannot be used to verify which geometric attributes?
 - a. Rule #1 boundary
 - b. Location of a feature of size
 - (c.) Orientation of a feature
 - d. None of the above

- 4. Which gage tolerancing policy accepts a few bad parts but rejects no good parts?
 - a. Absolute tolerancing policy
 - b Optimistic tolerancing policy
 - c. Tolerant tolerancing policy
 - d. None of the above
- 5. Using the absolute tolerancing policy on a functional gage, the gage tolerances are:
 - a.) Subtracted from the specification limits
 - b. Added to the specification limits
 - c. Added and subtracted from the specification limits
 - d. None of the above
- 6. The Y14.43 recommended tolerance for an attribute gage is:
 - a. 10% gage tolerance and 10% wear allowance
 - b. 10% gage tolerance and 5% wear allowance
 - (c.) 5% gage tolerance and 5% wear allowance
 - d. None of the above

- 7. When using the tolerant gage tolerancing policy, a functional gage will...
 - a. Rejected all noncompliant parts
 - b. Accepted all compliant parts
 - (c.) Accept some noncompliant and reject some compliant parts
 - d. None of the above
- 8. The optimistic gage tolerancing policy places the gage tolerance _____ the specification limits.
 - (a.) All outside
 - b. All inside
 - c. Half inside and half outside
 - d. None of the above
- 9. Which gage tolerancing policy is most likely to accept out-of-spec features?
 - a. Absolute
 - b. Optimistic
 - c. Tolerant
 - d. Depends upon the class of gage tolerance

- 10. How much tolerance does a 50mm class 'X' gage pin get?
 - a. 0.0019
 - (b.) 0.0023
 - c. 0.0050
 - d. None of the above
- 11. What is one result of using a class "Z" gage tolerance?
 - <u>a</u>. Rejection of good parts decreases
 - (b.) Rejection of good parts increases
 - c. Gage cost increases
 - d. None of the above
- 12. A gage with a class X tolerance should be used to verify a workpiece feature with:
 - a. Class H11 tolerance
 - b. Class H9 tolerance
 - (c.) Class H8 tolerance
 - d. Class H7 tolerance


- 1. While a GO gage uses less than 10% of the design tolerance, a functional gage may actually use:
 - a. Up to 20%
 - b. Up to 30%
 - c. Up to 40%
 - (d.) Up to 50%
- 2. Which are design constraints of a functional gage?
 - (a.) The size and weight of the functional gage
 - b. The resolution of the indicator
 - c. A functional gage is only suitable for in-process inspection
 - d. None of the above
- 3. An in-process gage is a gage:
 - (a.) Used by manufacturing personnel to inspect the process
 - b. Used in a non-hostile environment
 - c. That has a gage tolerance more precise than a final inspection gage
 - d. Made by the manufacturing process

- 4. When is it acceptable to depart from the two opposed points LMC gaging principle with an attribute type gage?
 - a.) On most attribute gages, flats may be used to avoid excessive wear
 - b. On very large holes
 - c. On large shaft diameters
 - d. None of the above
- 5. How does a datum feature referenced at RMB affect the gage design?
 - a. The datum feature simulator must be adjustable
 - b. The part cannot be displaced on the gage
 - c. The inspector can optimize the part position on the gage
 - d.) Both A and B
- 6. Unless otherwise specified, workpieces are to be inspected:
 - a. In the restrained state, where necessary to make repeatable measurements
 - b. Only restrained against the datum features
 - c. In the same orientation as they'll be in the final assembly
 - d.) Without any force at all (free state)

- 7. Why is a referee gage necessary?
 - a. Because inspectors may make errors when using unfamiliar gages
 - b) To mediate acceptance disputes from other gages
 - c. Because of the uncertainty in measurement
 - d. To calibrate the production gage
- 8. When is it permissible to depart from full-form, full-length MMC gage principles?
 - (a.) When gaging an extremely long (deep) hole
 - b. When gaging an extremely small diameter
 - c. When gaging a flexible (non-rigid) part
 - d. None of the above
- 9. Using a 10% gage tolerance and absolute gaging policy, what size would the GO gage pin be for a 12.3-12.7 diameter hole?
 - (a.) 12.30 12.34 dia.
 - b. 12.28 13.32 dia.
 - c. 12.26 12.30 dia.
 - d. None of the above

- 10. Using a 10% gage tolerance and the optimistic gaging policy, what size would the GO-ring gage be for a 54.2-54.7 diameter shaft?
 - a. 54.675 54.725 dia
 - b. $54.65 54.70 \, \text{dia}$
 - c. 54.75 54.80 dia
 - (d.) None of the above

Lesson 6 - Exercise 6

Dimensional Measurement Plan

Dimensional Measurement Plan Information Page 1 of 2												
Prototype X First Article Production				Ke	Key Contact/Phone:			g.):	Date (Rev.):			
	ement Plan Number:	Exerc	cise 6						3.0			
Part Nu Level:	Part Number/Latest Change Level: Core Team: Customer Engineering Approval/Date (If Req'd):											
	me/Description: Spring retainer				St	pplier/Plant Approval/Date:	Customer Quality Approval/Date (if Req'd):					
Supplier	Plant: Supplier	r Code:			D	sign Function Analysis #:	DFMEA#:					
	Dimensional	Informati	ion			Methods				Measurement Conditions		
Dim No.	Description	MFG Process	MFG C _P K	Special Char. Class	Specification Tolerance	Evaluation Measurement Method	Size	pple Freq.	Measurement Equipment	Acceptable Limits	Decision Rule/ Attribute Gage Tolerance Policy	
1	Flatness on datum feature A	N/A	N/A	N/A	0.2 max	Use flatness gage (surface plate with dial indicator mounted in hole)		N/A	Flatness gage #XXXXX	0-0.2	Simple acceptance rule 5:1	
2	Local size of hole	N/A	N/A	N/A	12.5 ±0.	Measure two places 90° apart.		N/A	Digital calipers #XXXX	11.9-12.5	Simple acceptance rule 5:1	
3	Rule #1 on hole	N/A	N/A	N/A	12.2	Use GO-plug gage	N/A	N/A	GO Gage #XXXXX	Pass	Absolute gaging policy	
4	Perpendicularity to datum A	N/A	N/A	N/A	Ø12.1 V	Use functional gage	N/A	N/A	Functional Gage (XXXX)	Pass	Absolute gaging policy	
5	Local size of O.D.	N/A	N/A	N/A	53.6 ±0.	Measure two places 90° apart	N/A	N/A	Digital calipers #XXXX	53.1-54.1	Simple acceptance rule 4:1	
6	Rule #1 on O.D.	N/A	N/A	N/A	54.1	Use GO-ring gage	N/A	N/A	GO Gage #XXXXX	Pass	Absolute gaging policy	
7	Position of O.D.	N/A	N/A	N/A	Ø54.9 V	Use functional gage	N/A	N/A	Functional Gage (#XXXX)	Pass	Absolute gaging policy	
8	Local size of tower diameter	N/A	N/A	N/A	39.9 ±0.	Measure two places 90° apart.		N/A	Digital calipers #XXXX	39.4-40.4	Simple acceptance rule 5:1	
9	Rule #1 on tower diameter	N/A	N/A	N/A	40.4	Use GO-ring gage		N/A	GO Gage #XXXXX	Pass	Absolute gaging policy	
10	Position of tower diameter	N/A	N/A	N/A	Ø40.6 V	Use functional gage	N/A	N/A	Functional Gage (#XXXX)	Pass	Absolute gaging policy	
11	Step dimension	N/A	N/A	N/A	17.9 ±0.	Rest flanged surface of part on surface plate. Measure distance from top surface of flange to top surface of part in 4 places 90° apart.		N/A	Surface plate, height gage	17.4-18.4	Simple acceptance rule 5:1	
12	Parallelism of flange	N/A	N/A	N/A	0.3 max	Check at least 18 points equally spaced	N/A	N/A	Surface plate Height gage (#xxxxx)	0.3 max	Simple acceptance rule 5:1	

Dimensional Measurement Plan

Dimensional Measurement Plan Information Page 2 of												Page 2 of 2			
							Key Contact/Phone:			Date (Orig.):			Date (Rev.):		
	ement Plan Number:	Exerc	cise 6												
Part Nu Level:	mber/Latest Change FN-106 Rev A					Core Team:	ore Team:			Customer Engineering Approval/Date (If Req'd):					
1	me/Description: Spring retainer						upplier/Plant Approval/Date:			Customer Quality Approval/Date (If Req'd):					
Supplie	r/Plant: Supplie	r Code:				Design Function Analy	sign Function Analysis #:				DFMEA#:				
Dimensional Information Methods												M	easurement Conditions		
Dim No.	Description	MFG Process	MFG C _P K	Special Char. Class	Specificati Toleranc		Evaluation Measurement M		Size	rple Freq.	Measurement Equipment	Acceptable Limits	Decision Rule/ Attribute Gage Tolerance Policy		
13	Flange to tower radius	N/A	N/A	N/A	R1 ma	x Use radiu	us gage template		N/A	N/A	Radius gage #XXXX	0-1	Absolute gaging policy		
14	Tower wall to bottom radius	N/A	N/A	N/A	R3 ma	x Use radiu	us gage template	XU	N/A	N/A	Radius gage #XXXX	0-3	Absolute gaging policy		
15	Stock thickness	N/A	N/A	N/A	2 ±0.0	8 2. Meas	Measure flange 2 places 180° apart. Measure side wall 2 places 180° apart. Measure bottom wall 4 places 90° apart.			N/A	Digital calipers #XXXX Need to identify a tool for steps 2 & 3.	1.92-2.08	Simple acceptance rule 5:1		
16	Material	N/A	N/A	N/A	SAE 10	60 Verify mat	Verify material certification								
							O								
					73		P								

- 1. T F An inspection report establishes the plan for how to inspect the part.
- 2. T F One requirement of an inspection report is to correlate the measurements to the print dimensions.
- 3. T F On large complex drawings, numbering dimensions may be omitted to keep the drawing clear.
- 4. T F Where an attribute gage is used, the inspection report does not report numbers or magnitude.
- 5. T F A nonconformance report should be an internal document not shared with the customer.
- 6. The practice of numbering dimensions and tolerances for inspection aids in:
 - (a.) Ensuring that all dimensions are identified for inspection
 - b. Identifying the proper algorithm for inspection
 - c. Choosing the best inspection tool
 - d. Identifying tolerances that are overly restrictive
- 7. When numbering a size dimension that applies to a pattern of holes, the dimension is assigned a base number and:
 - a. The base number applies to all of the holes
 - b) Each hole in the pattern is assigned a sub-number
 - c. Each hole in the pattern is assigned a different base number
 - d. The holes in the pattern are not assigned any number

- for a workpiece that failed 8. A nonconformance report documents the the gaging or had a measurement outside its tolerance specification.
 - a. Gage R&R
 - b. Measurement procedure used
 - c.) Corrective action
 - Nonconformity costs
- 9. An inspection report may display the results of a measurement by using:
 - <u>a</u>. Marks on the drawing
 - b.) Color coding
 - c. A signed certificate of approval
 - Special symbols
- 10. A standard format for inspection reports is:
 - a. ASME Y14.5.1
 - b. ASME Y14.43
 - c. APQP
 - AS9102A

- 1. Which algorithm is most accurate when inspecting the Rule #1 requirement of a hole?
 - a. Least squares best fit cylinder
 - b) Maximum inscribed cylinder
 - c. Minimum circumscribed cylinder
 - d. Minimum zone cylinder
- 2. Which method is most accurate when inspecting the Rule #1 requirement of a hole?
 - a. A GO-snap gage
 - b. A GO-ring gage
 - c.) A GO-plug gage
 - d. A caliper
- 3. Which method or gage may be used to inspect the LMC size limit of a shaft diameter?
 - (a.) A NOGO-snap gage
 - b. A CMM using the minimum circumscribe algorithm
 - c. A CMM using the least squares algorithm
 - d. None of the above

- 4. When inspecting the Rule #1 requirement of a shaft diameter, what is reported?
 - (a.) Pass or fail results of the diameter fitting a GO-ring gage
 - b. Maximum measured actual local size
 - c. Set of all measured actual local sizes
 - d. None of the above
- 5. When inspecting the LMC size limit of a shaft diameter, what is reported?
 - a. Maximum measured actual local size
 - b. Set of all measured actual local sizes
 - (c.) Minimum measured actual local size
 - d. None of the above
- 6. When is Rule #1 not inspected?
 - a. When inspecting a regular feature of size to which a position tolerance applies
 - b. When inspecting a regular feature of size to which a perpendicularity tolerance applies
 - (c.) When inspecting the thickness of 16 GA sheet metal
 - d. None of the above

- 7. Which statement is true when using an attribute gage to inspect an actual local size?
 - a. It requires two gages: one for the max size limit and one for the min size limit
 - b. The gage should not be a full-length, full-form gage
 - (c.) Both A & B
 - d. None of the above
- 8. When using a CMM to inspect the size of a hole, which algorithm complies with the Y14.5 definition of an actual local size?
 - a. Least squares best fit circle
 - b. Minimum circumscribed circle
 - c. Maximum inscribed circle
 - (d.) None of the above
- 9. When inspecting an internal regular feature of size, what should be indicated on the inspection report?
 - a. The pass or fail results for Rule #1
 - b. The largest actual local size measurement
 - (c.) Both A & B
 - d. None of the above

- 10. When using a CMM to inspect Rule #1 on a shaft with an anticipated form error greater than 10% of size tolerance, what is the suggested minimum number of points needed?
 - a. 20 equally spaced points on four equally spaced circular elements
 - b. 28 equally spaced points on at least 4 equally spaced circular elements
 - (c.) 80 equally spaced points on four equally spaced circular elements
 - d. None of the above

- 1. T F A candidate datum set is the set of all possible datums established from a datum feature.
- 2. T F Any one of the qualified candidate datums may be used for inspection.
- 3. T (F) A datum plane is always established from the largest surface on the part.
- 4. T F Form variations on the datum features may cause a part with all planar datums to have more than one orientation in its datum reference frame.
- 5. T If a part does not meet a requirement on one candidate datum, but does meet the requirement on another, the part is considered to have passed the requirement.
- 6. T F One way to reduce the effects a candidate datum set has on inspection is to specify a flatness tolerance on the primary datum feature.
- 7. T F Using the candidate datum set concept increases measurement uncertainty.
- 8. T F Specifying datum targets will eliminate the candidate datum set.
- 9. T F Using the candidate datum set will reduce the amount of parts that are accepted.

- 10. Which drawing indication communicates how the part is located and oriented in a gage or fixture during inspection?
 - (a.) Datum reference sequence
 - b. Coordinate linear and angular dimensions
 - c. General (title block) tolerances
 - d. None of the above
- 11. A primary datum plane is a plane established from _____ of the datum feature.
 - (a.) The three highest points
 - b. A least squares plane passing through all points
 - c. The single highest point
 - d. The two highest points
- 12. A primary datum <u>must</u> constrain a minimum of ____ degrees of freedom.
 - a 2
 - (b.) 3
 - c. 4
 - d. 6

- 13. If a primary planar datum feature is concave, it:
 - a. Will only have one candidate datum plane
 - (b.) May have several candidate datum planes
 - c. Cannot be used as a primary datum feature
 - d. None of the above
- 14. One of the Y14.5 requirements for a datum feature is that it must be:
 - (a.) Accessible
 - b. An external feature
 - c. Simulated in the restrained state for a flexible part
 - d. None of the above

- 1. T F Using the proper probing strategies with CMM datum simulation reduces measurement uncertainty.
- 2. T F Failure to correctly simulate a datum reference frame may affect all geometric tolerances related to the datum reference frame.
- 3. T F A CMM operator should <u>always</u> probe the workpiece to simulate a datum reference frame.
- 4. T F A least squares cylinder should be used to establish a datum axis RMB.
- 5. T F Datum feature shift cannot be done when measuring with a CMM.
- 6. When simulating a primary datum plane with a CMM where the flatness of the surface is unknown, what is the suggested minimum number of points that should be taken?
 - a 3
 - b. 9
 - (c.) 20
 - d. 500

- 7. When simulating a primary datum axis using a CMM where the form error of the diameter is unknown, what is the suggested minimum number of points that should be taken?
 - a. 5
 - b. 28
 - c.) 80
 - d. 160
- 8. When simulating a datum axis (primary RMB) with a functional fixture, the candidate datum set concept:
 - a. Does not apply
 - b. Does apply
 - c. Only applies if the part is non-rigid
 - d. Only applies if the part not restrained
- 9. When using a CMM to simulate a primary datum axis (RMB) from a hole which algorithm should be used?
 - a. Least squares best fit cylinder
 - b. Minimum circumscribed cylinder
 - (c.) Maximum inscribed cylinder
 - d. None of the above

- 1. What is the Y14.5 requirement of flatness?
 - a. That two planar surfaces are parallel
 - b. That the surface is not wavy or convex
 - (c.) The high and low points of a surface are limited by two parallel planes
 - d. The high and low points of each line are limited by two parallel lines
- 2. When using a CMM to inspect flatness of a workpiece, what is the algorithm that best matches the Y14.5 requirement?
 - a. Least squares
 - b. Minimum tangent plane
 - c. Minimum circumscribed
 - (d.) Minimum zone
- 3. What is one limitation of variable measurement inspection of flatness?
 - (a.) The part must be light enough for the inspector to manipulate
 - b. Algorithmic measurement is far more accurate
 - c. Open setup inspections of flatness are time consuming
 - d. Only attribute data can be collected
- 4. What is one benefit of variable measurement inspection of flatness?
 - (a.) The required equipment is relatively economical
 - b. The inspection is unaffected by small amounts of dirt
 - c. The resolution of the indicator has only a minimal effect on accuracy
 - d. The tip size of the indicator has only a minimal effect on accuracy

- 5. When using a CMM to inspect flatness on a surface with a form error greater than 10%, what is the recommended minimum number of points?
 - a. 9
 - b. 25
 - (c.) 80
 - d. None of the above
- 6. When using the Ad Hoc probing strategy to distribute 80 points on a 20 x 60 mm surface, which grid pattern size should be used?
 - a. 4 X 20
 - (b.) 8 X 10
 - c. 9 X 9
 - d. None of the above
- 7. What is the Y14.5 requirement for a flatness tolerance at MMC applied to a planar feature of size?
 - a. The derived median plane must fit within two parallel planes
 - b. The two opposed surfaces must fit within a virtual condition boundary
 - c. Both opposed surfaces must fit with two parallel planes
 - d. None of the above

- 8. For a planar feature of size (width), its virtual condition may be simulated using:
 - (a.) Two gage blocks spaced apart at the virtual condition distance
 - b. A mylar overlay on an optical comparator
 - c. Calipers set at the virtual condition size
 - d. None of the above
- 9. In a traditional inspection report, how is the measurement result of a flatness tolerance applied to a surface reported?
 - a. Pass / fail result of the part fitting a GO gage
 - b. The value of the furthest point from a least squares plane
 - c. The max measured deviation between the highest and lowest points on the surface
 - d. None of the above
- 10. Which of these is an example of a computer-aided inspection report for a flatness tolerance applied to a surface?
 - a. A CMM report showing the max measured deviation value
 - b.) A color-coded surface topography map
 - c. A whisker plot
 - d. None of the above

- 1. In Y14.5, a straightness tolerance applied to a surface requires that:
 - a. All surface line elements are parallel
 - b. The surface is not wavy or convex
 - c. All points of a surface must be between two parallel planes
 - d.) All points of each line element must be between two parallel lines
- 2. What is one option for variable measurement of straightness of a line element?
 - a. Set the part in a V-block, and run an indicator along the surface
 - b. Use an optical comparator to measure the distance from a line tangent to the highest or lowest points of a line element to the furthest point from the tangent line
 - c. Establish a least squares mid-line, and measure the distance between the furthest points on each side of that line
 - d. None of the above
- 3. What are the two most common algorithms used when inspecting straightness of a line element on a CMM?
 - a. Least squares and two-point measurement
 - b. Least squares and maximum tangent plane
 - (c.) Least squares and minimum zone
 - d. Least squares and minimum tangent plane

- 4. What is a common inspection method for straightness at MMC applied to a feature of size?
 - a. A CMM & least squares algorithm
 - (b.) A GO Gage
 - c. A CMM and minimum zone algorithm
 - d. Surface plate and wire gage
- 5. Which symbol must be specified when a straightness tolerance is applied to a feature of size?
 - a. Square symbol
 - b. LMC symbol
 - c. MMC symbol
 - d. Diameter symbol
- 6. In a traditional inspection report for a straightness tolerance applied to a surface line element, which value is reported?
 - a. The average of all measured straightness deviations of all line elements
 - b. The distance between the single highest point and the lowest point
 - c. The distance between a least squares line and furthest point
 - d.) The distance from a tangent line to the furthest point

- 7. T F According to Y14.5, acceptance limits are treated as absolute values.
- 8. T F Decision rules explain the difference between design tolerances and acceptance limits.
- 9. T F When inspecting straightness of a pin surface element, the indicator is moved radially along the surface.
- When inspecting straightness of a surface element on a CMM, the line element must be set parallel to the surface plate.

- 1. How does a circularity tolerance limit the lobing of a diameter?
 - a. By limiting all circular elements within one circular boundary
 - (b.) By limiting all circular elements between two concentric circles
 - c. By limiting all circular elements within one cylindrical boundary
 - d. By limiting all line elements between two coaxial cylinders
- 2. Why is it important to conduct dimensional measurement planning for a circularity tolerance?
 - a. There is no other way to indicate the filtering parameter
 - b. There is no other way to indicate the applied algorithm
 - c. There is no other way to indicate the stylus tip size
 - (d.) There is no other way to indicate the number of surface points
- 3. Why can't a part be automatically rejected if its runout deviation is greater than its circularity tolerance using the circular runout method?
 - a. Because of the roundness deviation of the centers and center holes
 - b. Because of the straightness deviation of the part
 - c. Because the runout measurement includes the eccentricity of the circular element to the axis of rotation
 - d. Because of the misalignment of the centers on the gage

- 4. When inspecting circularity using a precision spindle machine, what is the algorithm that best matches the Y14.5 definition of the tolerance zone?
 - (a.) Minimum radial separation
 - b. Least squares circle
 - c. Minimum circumscribed circle
 - d. Maximum inscribed circle
- 5. When inspecting circularity of a 12mm diameter, what is the default UPR filtering?
 - a. 15
 - b. 30
 - (c.) 50
 - d. 100
- 6. What is one way to reduce specification uncertainty with circularity?
 - a. Conduct design reviews that include manufacturing and quality personnel
 - (b.) Use the complete circularity specification
 - c. Conduct measurement planning for all parts
 - d. Use established standards

- 7. When using an algorithmic measurement method to inspect cylindricity, how is the reference axis established?
 - a. By locating the part on centers in a fixture
 - b. By using a chuck, collect, or other centering device
 - (c.) By using a minimum zone algorithm
 - d. None of the above
- 8. What is one source of uncertainty unique to using the total runout method to inspect cylindricity?
 - a. The number of data points
 - (b.) The misalignment of the centers
 - c. The surface roughness of the diameter
 - d. The algorithm that is used
- 9. When using a CMM to inspect cylindricity, the applied algorithm:
 - a. Should be specified as a complete cylindricity tolerance on the drawing
 - b. Should be specified in the inspection or non-conformance report
 - c. Should default to the algorithms defined in the ASME Y14.5 standard
 - (d.) Should be documented in the dimensional measurement plan

- 10. When using algorithmic measurement method to inspect a cylindricity tolerance, the measurement result is affected by:
 - a. The number of data points
 - b. The applied algorithm
 - c. The shape of the part (e.g., hour glass, barrel, waisting, etc.)
 - (d.) All of the above

- 1. What is one Y14.5 requirement of an angular dimension?
 - (a.) The high and low points of the surface must be within the tolerance zone
 - b. Only the high points of the surface must be within the tolerance zone
 - c. Only the low points of the surface must be within the tolerance zone
 - d. A tangent plane of each line element must be within the tolerance zone
- 2. When verifying an angular dimension, which method/tool is Y14.5 compliant?
 - a. A protractor

Functional Gaging and Measurement

- b. Applying the least squares algorithm
- c. Applying the max tangent plane algorithm
- (d.) None of the above
- 3. What is one Y14.5 requirement of a perpendicularity tolerance applied to a surface?
 - a. The tolerance zone must <u>always</u> be 90 degrees to the primary datum referenced
 - b. Only the high points of the part surface must be within the tolerance zone
 - c. Only the least squares plane of the part surface must be within the tolerance zone
 - d. The orientation of the tolerance zone is established from the high points of the part surface

- 4. When using a dial indicator to inspect a perpendicularity tolerance applied to a surface, the part is placed on the datum plane and the dial indicator is:
 - a. Moved vertically from the bottom to the top of the surface
 - b. Moved across the full length and width of the surface
 - c. Held stationary to check one point of the surface
 - d. None of the above
- 5. What is one source of measurement uncertainty when using a dial indicator to inspect a perpendicularity tolerance applied to a surface?
 - a. The shape of the tolerance zone
 - b. Whether the tangent plane or least squares algorithm is used
 - c.) Probe tip size
 - d. None of the above
- 6. When using CMM to inspect a perpendicularity tolerance applied to a surface, the CMM calculates:
 - a. The distance between the highest and lowest points normal to a reference plane that is perpendicular to the datum plane
 - b. The angular deviation of a least squares plane of the toleranced surface
 - c. The angular deviation of a max or min tangent plane of the toleranced surface
 - d. None of the above

- 7. What is one source of measurement uncertainty when using a CMM to inspect a perpendicularity tolerance applied to a surface of a rigid part?
 - a. The shape of the tolerance zone
 - b. The hardness of the part surface
 - (c.) The form deviation of the datum feature (e.g., convex surface)
 - d. None of the above
- 8. What is one Y14.5 requirement of a perpendicularity tolerance at MMC applied to a feature of size?
 - a. It must be verified using variable-type measurement
 - b. The surface(s) of the feature of size must not violate a virtual condition boundary
 - c. The axis/center plane of the actual mating envelope must be within the tolerance zone
 - d. None of the above
- 9. What is the most common method/tool used to verify a perpendicularity tolerance at MMC applied to a feature of size?
 - a. A protractor
 - b. A dial indicator
 - (c.) A functional gage
 - d. None of the above

- 10. What is one source of measurement uncertainty when using a functional gage to verify a perpendicularity tolerance at MMC applied to a feature of size?
 - a. The shape of the tolerance zone
 - b. The form error of the feature of size
 - c.) Tolerance accumulation within the gage
 - d. None of the above

- 1. Which statement is a Y14.5 requirement for a position tolerance (RFS) applied to a hole?
 - a. The high and low points of the hole's surface must be within the tolerance zone
 - (b.) The axis of the unrelated actual mating envelope of the hole must be within the tolerance zone
 - c. The derived median line of the hole must be within the tolerance zone
 - d. A center point at each end of the hole must be within the tolerance zone
- 2. Which statement is a Y14.5 requirement of a position tolerance (MMC) applied to a hole?
 - a. The high and low points of the hole's surface must be within the tolerance zone
 - (b.) The surface of the hole must not violate a virtual condition boundary located at its true position
 - c. The derived median line of the hole must be within the tolerance zone
 - d. A center point at each end of the hole must be within the tolerance zone

- 3. When using a functional gage to inspect a position tolerance (MMC) applied to a hole, which step should be done first?
 - a. Measure the size of the hole and determine the amount of bonus tolerance available
 - b. Place a virtual condition pin into the hole
 - c.) Locate the part relative to the datum reference frame
 - d. None of the above
- 4. What is one source of measurement uncertainty when using an attribute (functional) gage to inspect a position tolerance (MMC) applied to a hole?
 - a. The shape of the tolerance zone
 - b. How many points are taken on the hole surface
 - c. Probe tip size
 - (d.) None of the above
- 5. When verifying position tolerance (RFS) applied to a hole, the axis of the unrelated actual mating envelope may be simulated using:
 - a. A virtual condition gage pin
 - (b.) A best fit gage pin
 - c. An MMC gage pin
 - d. An LMC gage pin

- 6. Which of these choices is a source of measurement uncertainty when inspecting a position tolerance (RFS) applied to a hole using a variable measurement method?
 - a.) Location of the measurement
 - b. How many points are taken on the hole surface
 - c. The algorithm used
 - d. None of the above
- 7. When verifying position tolerance (RFS) applied to a hole using a CMM, the axis of the unrelated actual mating envelope may be simulated using a:
 - a. Virtual condition gage pin
 - b. Least squares circle at each end of the hole
 - c.) Max inscribed cylinder
 - d. None of the above
- 8. Which of these choices is a source of measurement uncertainty when inspecting a position tolerance (RFS) applied to a hole using a CMM?
 - a. The shape of the tolerance zone
 - b. Including the effects of the bonus tolerance
 - c.) Datum reference frame construction
 - d. None of the above

- 9. Which formula should be used to calculate the position tolerance deviation using th delta X and delta Y coordinates from true position?
 - a. $\frac{1}{2}(X * Y)$
 - b. $2\sqrt{\Delta X^2 \times \Delta Y^2}$
 - c. $(\sum X Y)/2$
 - d. None of the above
- 10. When creating a dimensional measurement plan for a position tolerance (RFS), which item from the list below should be documented in the "measurement method" box of the form?
 - (a.) Algorithm
 - b. Equipment ID
 - c. Sample size
 - d. None of the above

- 1. Which statement describes a requirement from Y14.5 for a circular runout tolerance applied to a cylindrical surface?
 - a. The tolerance zone applies simultaneously to all circular elements of the surface
 - b. The tolerance zone is not related to any datums
 - (c.) The tolerance zone applies independently to each circular element
 - d. None of the above
- 2. Which statement describes a requirement from Y14.5 for a total runout tolerance applied to a cylindrical surface?
 - a. The tolerance zone applies simultaneously to all circular elements of the surface
 - b. The tolerance zone is not related to any datums
 - c. The tolerance zone applies independently to each circular element
 - d. None of the above

- 3. Which statement best describes how to verify a circular runout tolerance using a dial indicator?
 - a. An indicator contacts normal to the surface at a fixed location as the part is rotated about the datum axis
 - b. An indicator contacts normal to the surface and moves parallel to the datum axis as the part is rotated
 - c. An indicator contacts normal to the surface and moves parallel to the datum axis
 - d. None of the above
- 4. Which statement best describes how to verify a total runout tolerance using a dial indicator?
 - a. An indicator contacts normal to the surface at a fixed location as the part is rotated about the datum axis
 - b. An indicator contacts normal to the surface and moves parallel to the datum axis as the part is rotated
 - c. An indicator contacts normal to the surface and moves parallel to the datum axis
 - d. None of the above

- 5. Which of these choices is a source of measurement uncertainty when using a dial indicator to inspect a circular runout tolerance applied to a cylindrical surface?
 - (a.) Instrument resolution
 - b. How many points are taken on the surface
 - c. The algorithm used
 - d. None of the above
- 6. When using a CMM to inspect a total runout tolerance, the CMM calculates and reports the:
 - a. Max distance between the datum axis and the center point of a least squares circle at several cross sections
 - b. Maximum radial deviation between highest and lowest point out of all measured circular cross sections
 - c. Radial distance between the furthest point and closet point to the datum axis for the full length and circumference of the surface
 - d. None of the above
- 7. Which of these choices is a source of measurement uncertainty when using a CMM to inspect a circular runout tolerance applied to a cylindrical surface?
 - (a.) Datum axis simulation
 - b. Instrument resolution
 - c. Tolerance zone shape
 - d. None of the above

- 8. When creating a dimensional measurement plan for a runout tolerance, which item from the list below should be documented in the "measurement method" box of the form?
 - a. Frequency
 - (b.) Equipment ID
 - c. Sample size
 - d. None of the above

- 1. Which statement is a requirement of Y14.5 for a profile of a surface tolerance applied to a surface?
 - (a.) The tolerance zone is a three-dimensional boundary
 - b. The tolerance zone is a two-dimensional boundary
 - c. The tolerance zone is a one-dimensional boundary
 - d. None of the above
- 2. When verifying a profile tolerance, an attribute gage can be used to verify:
 - a. How much the surface varies from its true profile
 - (b.) If the surface is within the profile tolerance zone
 - c. How much the surface varies from its true position
 - d. None of the above
- 3. When using a functional gage to inspect a profile of a surface tolerance applied to a surface, which step should be done first?
 - a. Use a gage pin to determine if the surface is within the tolerance zone
 - b. Locate the part relative to its true profile
 - c.) Locate the part relative to the datum reference frame
 - d. None of the above

- 4. When using an indicator to verify a profile of a surface tolerance, the dial indicator checks the location of the surface relative to the:
 - (a.) True profile
 - b. Extreme boundaries
 - c. Profile tolerance value
 - d. None of the above
- 5. What is one source of measurement uncertainty when using variable measurement methods to inspect a profile tolerance applied to a surface?
 - a. The shape of the tolerance zone
 - (b.) Probe tip size
 - c. The algorithm used
 - d. None of the above
- 6. When using a CMM to verify a profile of a surface tolerance, the CMM uses an algorithm to determine the:
 - a. True profile of the surface
 - b. Location of the surface
 - c. Profile tolerance value
 - (d.) None of the above

- 7. Which of these choices is a source of measurement uncertainty when using algorithmic measurement methods to inspect a profile tolerance applied to a surface?
 - a. The shape of the tolerance zone
 - b. Resolution of the indicator
 - (c.) Datum reference frame simulation
 - d. None of the above
- 8. When creating a dimensional measurement plan for a profile tolerance, which item from the list below should be documented in the "measurement method" box of the form?
 - <u>a</u>. The shape of the tolerance zone
 - b. Number and spacing of points
 - c. Sample size
 - d. None of the above