contents

Preface	xi
CHAPTER 1	
Introduction and a Brief Histo	ory
of Electric Aircraft	1
1.1 Background	1
1.2 Electrification Trend	2
1.3 Early Electric Flights	3
1.4 The Solar Years	4
1.5 All-Electric and Hybrid-Electric	6
1.6 Way Forward	10
1.7 Book Structure	10
References	11
CHAPTER 2	
The Electric Aircraft Paradign	n 13
2.1 Scope and Stakes	13
2.2 Route to Electric Aircraft	14
2.3 Electrical Chain Breakdown	17
2.4 Technology Stakes	18
2.5 Conclusion	21
References	21

CHAPTER 3

Electrification of Aircraft Systems-Pa	rt I: Power
Generation and Distribution, Electrical	
Networks and Architectures	23
3.1 Conventional Aircraft and Engine Systems	23
3.2 More Electric Engine (MEE) Systems	26
3.3 More Electric Aircraft (MEA) Systems	27
3.3.1 Electrical Power Generation and Distrib	ution 29
References	45

CHAPTER 4

		cation of Aircraft Systems—Part II: ment of Pneumatics, Enabling	
Тес	hnol	ogies	49
4.1	Pneun	natic Power Generation	49
4.2	Enviro	nmental Control System	50
	4.2.1	Conventional ECS	51
	4.2.2	Electric ECS	54
4.3	Wing	Ice Protection System	61
4.4	Enabli	ng Technologies	62
	4.4.1	Motors	62
	4.4.2	Power Electronics	64
4.5	Conclu	usions	69
Refe	erences		70

CHAPTER 5

Ele	ctrifi	cation of Aircraft Systems—Part III: Shift	
fro	m Hy	draulic to Electric-Powered Actuation	73
5.1	Actua	tion Needs for Power Transmission and Control	74
5.2	Gener	al Considerations for PbW Actuation	76
	5.2.1	From Power by Pipe Towards Hydraulic-Less PbW	77
	5.2.2	PbW Actuator Interface to Electric Power Networks	79
	5.2.3	Power Control in PbW Actuators	80

	5.2.4	Reliability	83
	5.2.5	Integration and Mutualization in PbW Actuation	84
5.3	Local	Generation of Hydraulic Power for Actuation	86
5.4	Electro	ohydrostatic Actuators	87
	5.4.1	Functional and Architectural View	87
	5.4.2	In-Service EHAs	88
	5.4.3	Main Issues for Extensive Use of EHAs	90
5.5	Electro	omechanical Actuators	91
	5.5.1	Functional and Architectural Aspects	91
	5.5.2	In-Service EMAs	94
	5.5.3	Imperfections of Technological Realization	96
	5.5.4	Maturation of EMAs	97
5.6	Challe	nges with Generalization of PbW Actuation	99
	5.6.1	Important Considerations for Use of PbW Actuation	99
	5.6.2	Evolution Towards All-PbW Actuation	101
Refe	erences		102
SAE	- and IS	SO-Related Documents	102
Acro	onyms		102

CHAPTER 6

Pro	pulsi	on Op	otions for the Electric Aircraft	105
6.1	Conventional Engines		105	
	6.1.1	Gas Tu	urbine	106
	6.1.2	Turbo	prop Engine	107
	6.1.3	Turbo	fan Engine	107
	6.1.4	Efficie	ncy	111
	6.1.5	Noise		112
6.2	Bleed	less Eng	gines for the More Electric Aircraft	113
6.3	3 Propulsion Systems for the Electric Aircraft			114
	6.3.1	Enabli	ng Architectures	115
		6.3.1.1	Electric Propulsion	115
		6.3.1.2	Hybrid-Electric Propulsion	117
		6.3.1.3	Distributed Electric Propulsion (DEP)	123
	6.3.2	Enabli	ng Technologies	124
		6.3.2.1	Motors	124
		6.3.2.2	Motor Controls	126

Refe	erences		133
6.4	Conclusion		132
	6.3.2.7	Batteries	130
	6.3.2.6	Fuel Cells	128
	6.3.2.5	Superconducting Electrical Systems	127
	6.3.2.4	Materials	127
	6.3.2.3	Motor and Motor Control Demonstrators	126

CHAPTER 7

Air	craft /	Applications—Part I: Electric Propulsion,	
Ele	ctric	Taxiing	137
7.1	Batter	y Electric Propulsion—Small General Aviation	138
7.2	Urban	Air Transportation	142
7.3	Fuel C	ell Electric Propulsion—Commuter Aircraft	148
7.4	Batter	y Electric Propulsion—Regional Aircraft	149
7.5	Batter	y Electric Propulsion—Short-Range Aircraft	150
7.6	Electr	ic Taxiing—Short-Range Aircraft	151
	7.6.1	Operation	152
	7.6.2	System Configurations and Performance	152
	7.6.3	Nose Landing Gear Actuation	153
	7.6.4	Main Landing Gear Actuation	154
	7.6.5	Business Models	158
7.7	Conclu	usions	158
Refe	erences		158

CHAPTER 8

Air	craft Applications—Part II: Hybrid-Electric	
Prc	pulsion	161
8.1	Fuel Cell Parallel HEP: Commuter Aircraft	161
8.2	Battery Series HEP: Commuter Aircraft	162
8.3	Battery Parallel HEP: Short-Range Aircraft	164
8.4	Battery Series HEP: Short-Range Aircraft	166
8.5	Battery Distributed HEP: Commuter Aircraft	168
8.6	Battery Distributed HEP: Regional Aircraft	169

191

8.7	Distributed HEP: Short-Range Aircraft		
	8.7.1	No-Battery Partial Turboelectric DHEP	171
	8.7.2	Fuel Cell Partial Turboelectric DHEP	172
	8.7.3	No-Battery Total Turboelectric DHEP	172
	8.7.4	Battery Total Turboelectric DHEP	174
8.8	SMES	Total Turboelectric DHEP: Long-Range Aircraft	176
8.9	Concl	usions	177
Ref	erences		178

CHA<u>PTER 9</u> Maintainability and Operational Overview 181 9.1 Ground Operations 181 9.1.1 Maintenance-State of the Art 181 9.1.1.1 Maintenance Planning 182 9.1.1.2 183 Maintenance Prediction-Condition Monitoring 9.1.2 **Changes for More Electric Aircraft** 187 9.1.3 **Changes for an Electric Aircraft** 188 9.1.4 **Airport Operations** 189 9.1.4.1 Infrastructure 189 9.1.4.2 Aircraft Handling 190 9.1.4.3 Refueling/Recharging 190 9.1.4.4 Pushback/Taxiing 9.2 In-Flight Operations 191 9.2.1 Flight Deck Operations 192 Complex Configurations/Licenses 9.2.1.1 192 9.2.2 Single Pilot Operations 192 9.2.3 Autonomous Flight 193 9.2.4 Pilots as Drone Operators 194 9.2.5 Cabin Operations 196 197

References

CHAPTER 10

Performance and Business Value of Electric	
Aircraft	199
10.1 Airline Cost Structure	199
10.2 Aircraft Fuel Costs	202

. . .

.

10.3 Airline Fuel Efficiency	203
10.4 Business Aviation	205
10.5 Short-Range Aircraft	209
10.6 Long-Range Aircraft	217
10.7 Regional Aircraft	220
10.8 General Aviation	221
10.9 Cost of Ownership	225
10.10 Environmental Footprint	226
References	230
Conclusion	233
About the Authors	235
Index	237