contents

Acknowledgements	<u>XV</u>
Preface	<u>xvii</u>
Disclaimer	<u>xix</u>

CHAPTER 1

The	Automobile Body	<u>1</u>
1.1	Description of Automobile Body Configurations	<u>3</u>
1.2	Body Terminology	<u>4</u>
1.3	Body Mass Benchmarking	<u>5</u>
1.4	Organization of Book	<u>6</u>
1.5	Scope of Book	<u>Z</u>
Refer	ences	<u>Z</u>

CHAPTER 2

Sys	stem Engineering	<u>9</u>
2.1	Systems Engineering and Requirements	10
2.2	Categories of Structural Requirements	15
2.3	The Locate and Retain Function	16
	2.3.1 Locate and Retain for Front Suspension Attachment	
	Structure	<u>18</u>
Refe	rences	<u>29</u>

CHAPTER 3

Automotive Body Structural Elements			<u>31</u>
3.1	Over	view of Classical Beam Behavior	<u>31</u>
	3.1.1	Static Equilibrium at a Beam Section	<u>32</u>
	3.1.2	Stress over a Beam Section	<u>33</u>
	3.1.3	Beam Deflection	<u>33</u>

3.2	Desig	on of Automotive Beam Sections	<u>37</u>
	3.2.1	Bending of Nonsymmetric Beams	<u>37</u>
	3.2.2	Point Loading of Thin-Walled Sections	<u>41</u>
3.3	Torsi	on of Thin-Wall Members	<u>47</u>
	3.3.1	Torsion of Thin-Walled Members with Closed Section	<u>47</u>
	3.3.2	Torsion of Members with Open Section	<u>51</u>
	3.3.3	Warping of Open Sections under Torsion	<u>53</u>
	3.3.4	Effect of Spot Welds on Structural Performance	<u>56</u>
		Peel versus Shear Loading Condition	<u>56</u>
		Longitudinal Stiffness of a Shear-Loaded Weld Flange	<u>59</u>
3.4	Thin-	Wall Beam Section Design in Automobiles	<u>64</u>
3.5	Buck	ling of Thin-Walled Members	<u>71</u>
	3.5.1	Plate Buckling	<u>71</u>
	3.5.2	Identifying Plate Boundary Conditions in Practice	<u>75</u>
		Post-Buckling Behavior of Plates	<u>77</u>
	3.5.4	Effective Width	<u>79</u>
		Thin-Walled Section Failure Criteria	<u>82</u>
		Techniques to Inhibit Buckling	<u>85</u>
		Note on the Use of High-Strength Steel	<u>89</u>
	3.5.8	Note on Bifurcation and Initial Imperfection	<u>89</u>
3.6	Auto	mobile Body Panels: Plates and Membranes	<u>93</u>
		Curved Panel with Normal Loading	<u>93</u>
		Normal Stiffness of Panels	<u>94</u>
		Oil-Canning Resistance	<u>95</u>
		Dent Resistance	<u>95</u>
	3.6.5	In-Plane Loading of Panels	<u>98</u>
		Membrane-Shaped Panels	<u>98</u>
		Membrane Analogy	<u>99</u>
3.7	Sumr	nary: Automotive Structural Elements	<u>101</u>
Refe	rences		<u>102</u>
	APTER		105
De	sign	for Body Bending	<u>105</u>
4.1	Body	-Bending Strength Requirement	<u>105</u>

4.2 Body-Bending Stiffness Requirement 108

4.3	Interi	nal Loads during Global Bending: Load Path	
	Analy	/sis	<u>114</u>
	4.3.1	Summary: Bending Strength	<u>121</u>
4.4	Analy	sis of Body-Bending Stiffness	<u>121</u>
	4.4.1	Importance of Joint Flexibility	<u>124</u>
	4.4.2	Strain Energy and Stiffness	<u>128</u>
	4.4.3	Note on the Bending Stiffness Changes due to Side	
		Doors	<u>131</u>
	4.4.4	Summary: Bending Stiffness	<u>132</u>
4.5	Princ	iples of Good Joint Design	<u>133</u>
	4.5.1	Examples of Body Joint Design	<u>137</u>
		A-Pillar-to-Hinge-Pillar Joint	<u>137</u>
		Hinge-Pillar-to-Rocker Joint	<u>138</u>
		Rocker-to-Floor-Cross Member Joint	<u>139</u>
	4.5.2	Joint Behavior at Abrupt Geometric Transitions	<u>140</u>
	4.5.3	Summary of Joint Design	<u>143</u>
Refe	rences		<u>144</u>

СН	APTER	5	
De	sign	for Body Torsion	<u>147</u>
5.1	Body	Torsion Strength Requirement	<u>147</u>
5.2	Body	Torsion Stiffness Requirement	<u>149</u>
	5.2.1	Ensure Good Handling	<u>149</u>
	5.2.2	Ensure Solid Structural Feel	<u>151</u>
5.3	Inter	nal Loads during Global Torsion: Load Path	
	Analy	/sis	<u>154</u>
	5.3.1	Shear-Resistant Members	<u>154</u>
	5.3.2	Summary: Torsion Strength	<u>164</u>
5.4	Analy	sis of Body Torsional Stiffness	<u>164</u>
	5.4.1	Shear Strain Energy of a Surface	<u>165</u>
	5.4.2	Energy Balance for Torque-Loaded Box	<u>165</u>
	5.4.3	Series Spring Analogy	<u>166</u>
	5.4.4	Effective Shear Rigidity for Structural Elements	<u>168</u>
		Examples Using Effective Shear Rigidity	<u>169</u>
	5.4.5	Torsional Stiffness of a Vehicle Cabin	<u>176</u>
	5.4.6	Summary: Torsion Stiffness	<u>179</u>
5.5	Torsi	onal Stiffness of Convertibles and Framed Vehicles	179

5.5.1	Torsional Stiffness of Convertibles	<u>179</u>
5.5.2	Torsional Stiffness of Body-on-Frame Vehicles	<u>182</u>
5.5.3	Torsional Stiffness of a Ladder Frame	<u>187</u>
5.5.4	Torsional Stiffness of Backbone Frame Vehicles	<u>190</u>
5.5.5	Torsional Resistance of Sandwich Plates	<u>191</u>
References		<u>194</u>

СН	A P T E R	6	
De	sign	for Crashworthiness	<u>197</u>
6.1	Stand	dardized Safety Test Conditions and Requirements	<u>197</u>
6.2	Front	Rigid Barrier	<u>198</u>
	6.2.1	Basic Kinematic Model of Front Impact	<u>201</u>
	6.2.2	Structural Requirements for Front Barrier	<u>204</u>
	6.2.3	Beam Sizing for Energy Absorption	<u>206</u>
	6.2.4	Beam Sizing for Cabin Reaction Structure	<u>209</u>
	6.2.5	Limit Analysis Design	<u>210</u>
	6.2.6	Plastic Hinge Behavior	<u>211</u>
	6.2.7	Design for Reducing Vehicle Pitch during Impact	<u>217</u>
	6.2.8	Summary: Structure for Front Barrier Impact	<u>219</u>
6.3	Side	Impact	<u>219</u>
	6.3.1	Kinematic and Load Path Analysis of Side Impact	<u>222</u>
	6.3.2	Flow Down of Requirements for Side Impact	<u>227</u>
		Crush Load for the Vehicle Side	<u>227</u>
		Clearance between the Occupant Shoulder and Door Panel	<u>228</u>
		Door Inner Crush Characteristic	<u>228</u>
6.4	Smal	l Offset Rigid Barrier	<u>230</u>
	6.4.1	Performance of Pre-Small Offset Rigid Barrier	
		designs	<u>231</u>
	6.4.2	Small Offset Rigid Barrier Strategy A: Absorb Energy	233
	6.4.3	Small Offset Rigid Barrier Strategy B: Glance Off	
		Barrier	<u>234</u>
6.5	Statio	c Roof Crush	<u>239</u>
6.6	Note	on Rear Impact	<u>241</u>
Refe	rences		242

<u>301</u> <u>303</u>

СН	A P T E R	7	
De	sign	for Vibration	<u>245</u>
7.1	First-	Order Vibration Modeling	<u>245</u>
7.2	7.2.1	ce-Path-Receiver Model of Vibration Systems Automobile Vibration Spectrum Human Response to Vibration	<mark>249</mark> 251 252
7.3	Frequ Syste	uency Response of a Single-Degree-of-Freedom	<u>254</u>
	7.3.1	Equation of Motion for SDOF System	<u>254</u>
	7.3.2	Relation of Vibration Amplitudes	<u>256</u>
		Regions of Vibration Behavior	<u>256</u>
		Amplitude at Resonance	<u>257</u>
		Transfer Function as Log-Log Plot	<u>259</u>
7.4		- Models of Vehicle Vibration Systems	<u>260</u>
		Powertrain Path: Reciprocating Unbalance	<u>260</u>
		Suspension Path: Load at Spindle	<u>264</u>
		Suspension Path: Deflection at Tire Patch	<u>270</u>
7.5	Strate 7.5.1	egies for Design for Vibration Mode Map of Vehicle Vibratory Systems	<u>272</u> 273
7.6	Body	Structure Vibration Testing	<u>273</u>
7.7	Mode	ling the Body Structure Resonant Behavior	<u>275</u>
	7.7.1	Modal Model	<u>276</u>
7.8		tion at Frequencies above the Primary Structure	
	Mode		<u>281</u>
	7.8.1	Body Panel Vibration	<u>282</u>
		Acoustic Cavity Resonance	<u>285</u>
		Vibration Isolation through Elastomeric Elements Local Stiffness Effect on Vibration Isolators	<u>287</u> 294
		Summary: Design for Vibration	<u>294</u> 295
70			200
7.9		on Use of Rotating Phasors to Solve Damped tion Problems	<u>296</u>
7.10	Note	s on Mechanical Impedance Technique	<u>298</u>

_	-				
	FO	-	10	~ ~	20
Re	Ie.	re		LE	

7.11 Note on Coupled Vibrations

CH	APTER	8	
Ve	hicle	Integration, Mass Estimation,	
and	d Str	ucture Layout	<u>307</u>
8.1	Desig	ning the Best Body Structure	<u>307</u>
8.2	Vehic	le Layout	<u>308</u>
	8.2.1	Side-View Vehicle Layout	<u>309</u>
	8.2.2	Front-View Vehicle Layout	<u>313</u>
	8.2.3	Plan-View Vehicle Layout	<u>316</u>
8.3	Exter	ior Body Surface	<u>317</u>
	8.3.1	Basic Proportions for Styling	<u>317</u>
	8.3.2	Aerodynamics	<u>319</u>
8.4		traints on Body Structure from Vehicle Layout and	
	Exter	ior Surface	<u>32</u> 1
8.5	Prelir	ninary Mass Estimation	<u>324</u>
	8.5.1	Benchmark-Based Mass Estimation	<u>324</u>
	8.5.2	Secondary Mass Change Model	<u>327</u>
	8.5.3	Mass Compounding	<u>327</u>
	8.5.4	Summary: Preliminary Mass Estimation	<u>33</u> 1
8.6	Body	Structure Layout	<u>332</u>
	8.6.1	Underbody Layout	<u>333</u>
	8.6.2	Cross-Car Layouts	<u>338</u>
		Dash Layout	<u>338</u>
		Rigid Mounted Sub-Frame	<u>338</u>
		Rear Wheel House	<u>339</u>
		Motor Compartment Layout	<u>340</u>
		Rear Structure Layout	<u>345</u>
8.7	Sumr	nary	<u>349</u>
Refe	rences		349

CHAPTER 9

Material Selection in Preliminary Design 353

9.1	Materials for the Body-in-White		<u>353</u>
	9.1.1	Steel Grades and Aluminum Alloys	<u>353</u>
	9.1.2	Alternative Materials for the Body-in-White	<u>355</u>
9.2	Meth	nod for Material Selection	361

9.3	Mass Benchmarking Alternative Materials	<u>370</u>
9.4	Summary: Material Selection	<u>371</u>
References		
Appendix A: Exercises		<u>373</u>
Appendix B: Nomenclature		
Appendix C: English and Metric Units and Typical Values for Key Parameters		
Index		<u>423</u>