Browse Publications Technical Papers 05-14-01-0007
2020-09-14

Materials and Technologies for Lightweighting of Structural Parts for Automotive Applications: A Review 05-14-01-0007

This also appears in SAE International Journal of Materials and Manufacturing-V130-5EJ

Reducing the weight of automotive components is one of the most achievable solutions for lowering the transport carbon footprint. This is the reason for the rapid increase over the last few years in the replacement of conventional alloys (i.e., steel and cast iron) with low-density materials (i.e., aluminum alloys, composites) and in the redesign of components shape in order to remove the unnecessary material (e.g., related to the introduction of additive manufacturing or high-strength materials). Despite this general trend, the use of higher-density metals and massive geometries is still predominant in the production of structural components, especially for heavy vehicles and safety-relevant parts. Aim of the present review is to summarize how this current situation can be overcome. The analysis started with an investigation about the materials that can be used for the production of structural parts, the potential reduction of the component weight and its costs. The scenarios analyzed foreseen by 2030 an improved weight reduction combined with additional cost. Both the parameters increased when moving from medium/small vehicles to luxury vehicles (from -18% to -35% weight and from €3 to €8-10 per kg saved, respectively) as a direct consequence of an increased usage of lighter materials. Then, the research reports some relevant actual applications, which succeeded in the weight reduction of these kind of components. The identified materials and technologies discussed were: advanced high-strength steel, carbon fiber-reinforced polymer, aluminum, additive manufacturing technologies, and alternative joining techniques.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 19% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

Hybrid Forming - A Novel Manufacturing Technique for Metal-LFT Structural Parts

2020-01-0235

View Details

TECHNICAL PAPER

A Manufacturing Cost Analysis of Tube and Node Steel Spaceframes

940657

View Details

TECHNICAL PAPER

Joint Design for Aluminum Automotive Structures

930492

View Details

X