Browse Publications Technical Papers 2000-01-3078
2000-08-21

Hybridization: Cost and Efficiency Comparisons for PEM Fuel Cell Vehicles 2000-01-3078

This paper primarily compares costs and fuel economies of load following direct-hydrogen fuel cell vehicles with battery hybrid variations of the same vehicle. Additional information is included regarding load-following indirect methanol fuel cell vehicles. The key points addressed are as follows: the tradeoff between fuel cell system efficiency and regenerative braking ability; transient effects; and component cost differences. The difference in energy use and costs can vary significantly depending on the assumptions and the hybrid configurations. The mass of the battery pack creates the largest impact in energy use, while system efficiency losses roughly balance out with regenerative braking. For the direct-hydrogen fuel cell system, transient effects are small. These effects are expected to be significant for steam reformer/indirect-methanol systems (analyzed only graphically herein). Cost values are very sensitive to uncertainties, but tend to show similar results to those for energy use: vehicles with larger battery packs and smaller fuel cell systems tend to cost more. A key variable is battery replacement over the life of the vehicle. More frequent replacement required for certain battery technologies evens out the cost differential in comparison to the more expensive but longer lasting battery choices for the hybrids.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Comparison of Energy Use for a Indirect-Hydrocarbon Hybrid versus an Indirect-Hydrocarbon Load-Following Fuel Cell Vehicle

2004-01-1476

View Details

TECHNICAL PAPER

Modeling the Performance of Lithium-Ion Batteries for Fuel Cell Vehicles

2003-01-2285

View Details

TECHNICAL PAPER

Report on the Field Performance of A123Systems’ Hymotion™ Plug-In Conversion Module for the Toyota Prius

2009-01-1331

View Details

X