Browse Publications Technical Papers 2000-05-0091
2000-06-12

Engine Management without Air Mass Flow Meter 2000-05-0091

The need for a stoichiometric air-to-fuel ratio in an SI engine with a catalytic converter makes the accurate knowledge of the air and fuel paths indispensable. This investigation is focused on the prediction of the air mass flow into the cylinder without the use of an air mass flow meter. A dynamical mean value engine model of the intake manifold has been derived. Combining a gain-scheduling and a self-tuning algorithm has been found to be a good strategy for the persistent adaptation of the intake manifold model to the changing ambient conditions and actuator parameters such as aging or malfunctions.
The adaptation algorithm is based on the direct identification of the air mass flows entering and leaving the intake manifold, thus the identified parameters can be interpreted as the throttle and the filling characteristics.
The recursive least squares algorithm has been used for parameter identification. Different modelling approaches and discretization methods have been applied for parametrization. The direct identification of the air mass flows by use of bilinear discretization techniques has brought the best results.
To reduce the noise level, a segment filter for identification has been developed. It calculates the mean value of the measure d signal from a collection of oversampled data. The use of the least squares algorithm has been shown to be a good approach to the prediction of the air mass in the cylinder without using an air mass flow meter. Yet the sensitivity of the least squares algorithm against coloured noise necessitates the investigation of other algorithms.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Two Dimensional Numerical Simulation of Inlet Manifold Flow in a Four Cylinder Internal Combustion Engine

790244

View Details

TECHNICAL PAPER

Steady-State Thermal Flows in an Air-Cooled, Four-Stroke Spark-Ignition Engine

1999-01-0282

View Details

TECHNICAL PAPER

Application of the Newly Developed KLSA Model into Optimizing the Compression Ratio of a Turbocharged SI Engine with Cooled EGR

2018-32-0037

View Details

X