Browse Publications Technical Papers 2002-01-1744
2002-05-06

Development of the High Power NADI™ Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions 2002-01-1744

Due to their high thermal efficiency coupled with low CO2 emissions, Diesel engines are promised to an increasing part of the transport market if their NOx and particulate emissions are reduced. Today, adequate after-treatments, NOx and PM traps are under industrialization with still concerns about fuel economy, robustness, sensitivity to fuel sulfur and cost because of their complex and sophisticated strategy.
New combustion process such as Homogeneous Charge Compression Ignition (HCCI) are investigated for their potential to achieve near zero particulate and NOx emissions. Their main drawbacks are too high hydrocarbons (HC) and carbon monoxide (CO) emissions, combustion control at high load and then limited operating range and power output.
As an answer for challenges the Diesel engine is facing, IFP has developed a combustion system able to reach near zero particulate and NOx emissions while maintaining performance standards of the D.I Diesel engines. This “dual mode” engine application called NADI™ (Narrow Angle Direct Injection) applies Homogeneous Charge Compression Ignition at part load and switches to conventional Diesel combustion to reach full load requirements.
At part load (including MVEG and FTP cycles), HCCI combustion mode allows near zero particulate and NOx emissions and maintains very good fuel efficiency close to an EURO III Diesel engine. At 1500 and 2500 rpm, NADI™ reaches 6 and 9 bar of IMEP with emissions of NOx and particulate under 0.05 g/kWh which means respectively 100 times and 10 times lower than a conventional Diesel engine.
At full load, NADI™ system is consistent with future Diesel engine power density standard. At 4000 rpm, 50/55 kW/l has been reached with conventional limiting factors and engine parameters settings.
Further development steps are also well identified, using advanced engine technology such as further generation of common rail fuel injection system, VVA or electric assisted turbocharger.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Approaches to Solve Problems of the Premixed Lean Diesel Combustion

1999-01-0183

View Details

TECHNICAL PAPER

A New Concept for Low Emission Diesel Combustion (2nd Rep. : Reduction of HC and CO Emission, and Improvement of Fuel Consumption by EGR and MTBE Blended Fuel)

981933

View Details

TECHNICAL PAPER

Effects of Ignition Timing on CAI Combustion in a Multi-Cylinder DI Gasoline Engine

2005-01-3720

View Details

X