Browse Publications Technical Papers 2002-01-1884
2002-06-03

Autothermal Reforming Catalyst Development for Fuel Cell Applications 2002-01-1884

Süd-Chemie Inc. is producing and supplying an autothermal reforming (ATR) catalyst that was developed by Argonne National Laboratory (ANL) for reforming hydrocarbon fuels to generate H2 for automotive fuel cell systems. The catalyst is derived from solid oxide fuel cell technology, where a transition metal is supported on an oxide-ion-conducting substrate, such as ceria or zirconia, that is doped with an un-reducible oxide, such as gadolinium or samarium, to improve its oxide ion conductivity and to increase the number of surface oxygen ion vacancies. The catalyst has been shown to produce an H2-rich gas (reformate) from a wide variety of hydrocarbon fuels, including methane, natural gas, and commercial-grade gasolines and diesels with high selectivity.
Platinum was the transition metal used in the first generation of the ANL catalyst. Because of concerns over the cost associated with using a precious metal-based catalyst, work has begun on reducing the cost of the catalyst either by replacing Pt with a less expensive non-noble metal or by using a combination of a noble metal, at a considerably lower metal loading, and with a base metal without sacrificing performance. This paper will discuss preliminary results from this work focusing on catalysts based on Ni, Rh, and a combination of Ni and Rh. Results from autothermal reforming of iso-octane (2,2,4-trimethylpentane) and steam reforming of a sulfur-free synthetic gasoline, Phillips California P-II, using the patented Argonne reforming catalyst.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X