Browse Publications Technical Papers 2014-01-0520
2014-04-01

Potential Improvements to Impact Responses of the Flexible Legform Impactor 2014-01-0520

The validity of evaluating FlexPLI peak injury measures has been shown by the correlation of the peak measures between a human FE model and a FlexPLI FE model. However, comparisons of tibia bending moment time histories (BMTHs) between these models show that the FlexPLI model exhibits a higher degree of oscillatory behavior than the human model.
The goal of this study was to identify potential improvements to the FlexPLI such that the legform provides more biofidelic tibia BMTHs at the normal standing height. Impact simulations using a human FE model and a FlexPLI FE model were conducted against simplified vehicle models to compare tibia BMTHs. The same series of impact simulations were conducted using the FlexPLI models that incorporated potential measures to identify measures effective for further enhancement of the biofidelity. An additional analysis was also conducted to investigate the key factor for minimizing the oscillation of the tibia BMTH.
The results of this study showed that the change of the mass distribution between the bony and flesh parts, along with the addition of the mass compensating for the upper body, provide more biofidelic FlexPLI tibia BMTHs, when used at the normal standing height. It was also found from the additional analysis that the primary factor for the oscillation of the tibia BMTH is the natural frequency of the skin/flesh part, rather than its damping characteristics.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Statistical Analysis of Vehicle Rollover Propensity and Vehicle Stability

920584

View Details

TECHNICAL PAPER

Use of Repair Estimate Information to Evaluate Physical Damage Severity in Two-Car Accidents

841254

View Details

TECHNICAL PAPER

Upper Body Coordination in Reach Movements

2008-01-1917

View Details

X