Browse Publications Technical Papers 2015-01-2585
2015-09-15

Multi-Body Model of a Fixed-Wing Large Passenger Aircraft for Nonlinear State Estimation 2015-01-2585

This paper proposes a solution for utilizing multi-body models in nonlinear state observers, to directly estimate the loads acting on the aircraft structure from measurement data of sensors that are commonly available on modern aircraft, such as accelerometers on the wing, rate gyros and strain gages.
A high-fidelity aeroelastic multi-body model of a fixed-wing large passenger aircraft is presented, suitable for the monitoring of landing maneuvers. The model contains a modally reduced flexible airframe and aerodynamic forces modeled with a doublet-lattice method. In addition, detailed multi-body models of the nose and main landing gear are attached to the flexible structure, allowing to accurately capture the loads during a hard landing event.
It is expected that this approach will make way for embedding non-linear multi-body models, with a high number of degrees of freedom, in state estimation algorithms, and hence improve health monitoring applications.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X