Browse Publications Technical Papers 2016-01-2353
2016-10-17

Internal Thrust Force Analysis of CVT Push Belt 2016-01-2353

A CVT belt is composed of multiple elements and layered rings. Each of these component parts generates loss, including relative slippage caused by the geometrical relationship between the elements and innermost ring layer. An effective way of increasing CVT efficiency is to reduce this slippage. However, since the relative slippage also controls whether the rings transmit constant torque at all times, reducing the slippage will also have an effect on the torque transmission performance of the rings. Therefore, to improve CVT efficiency by reducing the relative slippage, it is first necessary to analyze the changes to torque transmission. However, this slippage is a phenomenon of the inner portion of the belt and it is extremely difficult to identify the internal thrust force when actual load is applied. This paper describes experiments carried out to analyze the changes in each torque transmission ratio when the relative slippage between the elements and innermost ring layer changes. It also compares the results of these experiments with the results of analysis performed using the finite element method to enable the same analysis to be carried out by simulation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Continuously Variable Accessory Drive System

970007

View Details

TECHNICAL PAPER

Optimizing the Geometry of a Half-Toroidal CVT

2005-01-3780

View Details

TECHNICAL PAPER

Optimization of Shifting Schedule of Vehicle Coasting Mode Based on Dynamic Mass Identification

2020-01-1321

View Details

X