Browse Publications Technical Papers 2017-01-0668
2017-03-28

Pressure-Based Knock Measurement Issues 2017-01-0668

Highly time resolved measurements of cylinder pressure acquired simultaneously from three transducers were used to investigate the nature of knocking combustion and to identify biases that the pressure measurements induce. It was shown by investigating the magnitude squared coherence (MSC) between the transducer signals that frequency content above approximately 40 kHz does not originate from a common source, i.e., it originates from noise sources. The major source of noise at higher frequency is the natural frequency of the transducer that is excited by the impulsive knock event; even if the natural frequency is above the sampling frequency it can affect the measurements by aliasing. The MSC analysis suggests that 40 kHz is the appropriate cutoff frequency for low-pass filtering the pressure signal. Knowing this, one can isolate the knock event from noise more accurately. Four time windows are identified for a knock event: (1) pressure rise due to flame propagation; (2) a rapid but resolved pressure rise that is ~50 µs in duration; (3) a transducer shock period that is highly contaminated by noise that is estimated to last ~300 µs; and (4) a sustained ringing period that is well resolved. Data during the transducer shock period need to be eliminated from all measures of knock because they do not represent the cylinder pressure - even when filtered. The commonly used maximum amplitude of pressure oscillation suffers from this problem. New procedures for knock onset and knock intensity characterization are proposed. The knock intensity metric uses the exponential decay envelope of the sustained oscillations to estimate the magnitude of the initial knock event. This metric was shown to correlate well between the different transducers.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Phenomena that Determine Knock Onset in Spark-Ignition Engines

2007-01-0007

View Details

TECHNICAL PAPER

Knock Threshold Detection in Turbocharged Gasoline Engine Using EEMD and Bispectrum

2016-01-0643

View Details

TECHNICAL PAPER

The Effects of Cylinder Size On Detonation and Octane Requirement

620522

View Details

X