Browse Publications Technical Papers 2018-01-1148
2018-04-03

Realizing Stoichiometric, Natural Gas-Fueled Combustion in Diesel Engines 2018-01-1148

For high-load applications, natural gas represents a clean burning, readily available, and relatively inexpensive alternative to number 2 Diesel fuel. However, the fuel’s poor ignitability has previously limited implementation to spark ignited and dual-fueled engines. These approaches suffer from reduced peak load and high engine-out particulate emissions, respectively, requiring lean operation and expensive aftertreatment to meet regulatory standards. A high-temperature combustion strategy can overcome the difficult ignitibility, allowing for true Diesel-style combustion of pure methane-the least ignitable and least sooting component of natural gas. In order to achieve this result, a compression system was designed to supply fuel at pressures suitably high to achieve good mixing and short injection durations, and a solenoid-actuated Diesel fuel injector was modified to function at these pressures with a gaseous fuel. This fuel supply system was paired with a single-cylinder research engine equipped with an insulated piston face. An intake preheat temperature of 250 °C was shown to provide the best combination of ignition delay and engine performance. A sweep of equivalence ratio then demonstrated soot emissions close to or below the current regulatory limit and combustion efficiencies greater than 96% up to stoichiometric fuel loadings. However, both soot emissions and combustion efficiency were worse than expected at low fuel loadings, and cycle-to-cycle variability was high throughout. Schlieren imaging and numerical investigation of the injection process demonstrate oscillatory dynamics and poor control over the end of injection. This indicates that further improvements to performance and emissions could be made by developing purpose-built gaseous fuel injectors. However, even with coarse control over injection, the improvements in particulate emissions over number 2 Diesel fuel and potential for stoichiometric operation-enabling NOx control using a three-way catalyst-make a strong case for further investigation and refinement.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Experimental Investigation of a Diesel Engine Operating on Natural Gas / Diesel Dual-Fuel Mode

2011-36-0351

View Details

TECHNICAL PAPER

An Analysis of Regulated and Unregulated Emissions in an HSDI Diesel Engine under the LTC Regime

2007-01-0905

View Details

TECHNICAL PAPER

Effect of Cetane Number with and without Additive on Cold Startability and White Smoke Emissions in a Diesel Engine

1999-01-1476

View Details

X