Browse Publications Technical Papers 2018-01-1414
2018-04-03

CAE Method for linking electrochemical Lithium-ion models into integrated system-level models of electrified vehicles 2018-01-1414

Historically, electrical-equivalent modeling of battery systems has been the preferred approach of engineers when modeling hybrid and electric vehicles at the system level. This approach has provided modeling engineers good boundary conditions for batteries, with accurate terminal voltage and state of charge (SOC) calculations; however, it fails to provide insight into the electrochemical processes taking place in their Lithium-ion cells, necessary to optimize control algorithms and predict aging mechanisms within the battery. In addition, the use of predictive battery models that simulate electrochemical mechanisms empowers engineers with the ability to predict the performance of a Lithium-ion cell without requiring cells to be manufactured. If hardware is already available and tested, the use of physics-based battery models allows the simulation of the cell to be done well beyond the conditions at which the battery has been tested. Thus battery testing and characterization effort is reduced significantly without compromising results accuracy. This paper proposes a method of linking electrochemical Lithium-ion models of battery systems with multi-domain (electrical, mechanical, thermal, and flow domains) system-level models of hybrid and battery electric vehicles. The resulting technology provides accurate battery state and performance prediction at minor additional computation cost and links cell design parameters with vehicle performance and energy management analysis.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Thermal Characteristics of Electric Vehicle Batteries

911916

View Details

TECHNICAL PAPER

Development of Lithium-Ion-Battery System for Hybrid System

2011-01-1372

View Details

JOURNAL ARTICLE

Physics-Based Equivalent Circuit Model for Lithium-Ion Cells via Reduction and Approximation of Electrochemical Model

2022-01-0701

View Details

X