Browse Publications Technical Papers 2018-01-1964
2018-10-30

Multi-Layer Framework for Synthesis and Evaluation of Heterogeneous System-of-Systems Composed of Manned and Unmanned Vehicles 2018-01-1964

The advancement of both sensory and unmanned technology, combined with increased utilization of autonomous platforms in complex teaming scenarios, has created a need for practical design space exploration tools to aid in the synthesis of effective System-of-Systems (SoS). The presented work describes a modular, flexible, and extensible framework, referred to herein as the Technologies and Teaming Evaluation (TATE) framework, for straightforward identification of high-quality SoS, which may include both manned and autonomous elements, through quantitative evaluation of system-level and SoS-level attributes against a set of user-defined reference tasks. More specifically, TATE combines a top-down (goal-driven) approach, which systematically decomposes mission-level goals into a set of relevant technology and teaming options, with a two-layer bottom-up (technology-driven) approach that compares and selects effective components and configurations both for individual systems and the overall team. The TATE framework serves as an extension to existing design space exploration tools that focus on individual system design and do not readily scale to SoS. A canonical example is used to illustrate the use of the TATE framework for synthesis and evaluation of team structures for use within a representative target tracking mission.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Integrated Diagnostics for Advanced Weapon Systems

861757

View Details

TECHNICAL PAPER

A Lightweight Spatio-Temporally Partitioned Multicore Architecture for Concurrent Execution of Safety Critical Workloads

2016-01-2067

View Details

JOURNAL ARTICLE

Applications of ARINC 818 in Avionics Video Systems

2009-01-3141

View Details

X