Browse Publications Technical Papers 2019-24-0184
2019-09-09

Inner-Insulated Turbocharger Technology to Reduce Emissions and Fuel Consumption from Modern Engines 2019-24-0184

Reducing emissions from light duty vehicles is critical to meet current and future air quality targets. With more focus on real world emissions from light-duty vehicles, the interactions between engine and exhaust gas aftertreatment are critical. For modern engines, most emissions are generated during the warm-up phase following a cold start. For Diesel engines this is exaggerated due to colder exhaust temperatures and larger aftertreatment systems. The De-NOx aftertreatment can be particularly problematic. Engine manufacturers are required to take measures to address these temperature issues which often result in higher fuel consumption (retarding combustion, increasing engine load or reducing the Diesel air-fuel ratio).
In this paper we consider an inner-insulated turbocharger as an alternative, passive technology which aims to reduce the exhaust heat losses between the engine and the aftertreatment. Firstly, the concept and design of the inner-insulated turbocharger is presented. A transient 3D CFD/FEM (Computation Fluid Dynamics/Finite Element Modelling) simulation is conducted and predicts that external heat losses will be reduced by 70% compared to a standard turbocharger, i.e. non-insulated turbocharger. A 1D modelling methodology is then presented for capturing the behaviour of the inner-insulated turbocharger. This is important as conventional models based on isentropic efficiency maps cannot accurately predict turbine outlet temperature. The alternative model is essential to demonstrate benefits in system-level simulations. Experimental results are presented from a transient air-path testing facility to validate the 1D model and demonstrate the characteristics of the inner-insulated turbocharger. Finally, the validated 1D model is used within a powertrain optimization simulation to demonstrate an improvement in fuel consumption for iso-NOx emissions over a low load city cycle of up to 3%.
The work was conducted under the THOMSON project which has received funding from the European Union’s Horizon 2020 Program for research, technological development and demonstration under Agreement no. 724037. The project aims to increase the market penetration of 48V hybrid vehicles.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

HyPACE - Hybrid Petrol Advance Combustion Engine - Advanced Boosting System for Extended Stoichiometric Operation and Improved Dynamic Response

2019-01-0325

View Details

TECHNICAL PAPER

Energy Conservation Optimization of the Vehicle-Fuel-Refinery System

750673

View Details

TECHNICAL PAPER

Optimal Catalytic Converter Heating in Hybrid Vehicles

2014-01-1351

View Details

X