Browse Publications Technical Papers 2020-01-0739
2020-04-14

Heterogeneous Machine Learning on High Performance Computing for End to End Driving of Autonomous Vehicles 2020-01-0739

Current artificial intelligence techniques for end to end driving of autonomous vehicles typically rely on a single form of learning or training processes along with a corresponding dataset or simulation environment. Relatively speaking, success has been shown for a variety of learning modalities in which it can be shown that the machine can successfully “drive” a vehicle. However, the realm of real-world driving extends significantly beyond the realm of limited test environments for machine training. This creates an enormous gap in capability between these two realms. With their superior neural network structures and learning capabilities, humans can be easily trained within a short period of time to proceed from limited test environments to real world driving. For machines though, this gap is guarded by at least two challenges: 1) machine learning techniques remain brittle and unable to generalize to a wide range of scenarios, and 2) effective training data that enhances generalization and generates the desired driving behavior. Further, each challenge can be computationally intensive on its own thereby exasperating the gap. Moreover, is has not yet been shown that a single form of learning or training is capable of addressing a large range of scenarios. As a result, solving the first challenge does not inherently solve the second and vice versa. The work described here discusses an approach to address the first challenge that would also provide a foundation for solving the second. Our approach utilizes a combination of conditional imitation learning with a static dataset, reinforcement learning with a simulation environment, and high-performance computing to train a neural network. As a result, this reduces the “time to solution” from to the existing techniques for autonomous driving and provides an extensible framework to address the second key challenge.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Observer for Faulty Perception Correction in Autonomous Vehicles

2020-01-0694

View Details

TECHNICAL PAPER

A Forward Collision Warning System Using Deep Reinforcement Learning

2020-01-0138

View Details

TECHNICAL PAPER

New Paradigm in Robust Infrastructure Scalability for Autonomous Applications

2019-01-0495

View Details

X