Browse Publications Technical Papers 2020-01-0821
2020-04-14

Effects of Geometry on Passive Pre-Chamber Combustion Characteristics 2020-01-0821

Towards a fundamental understanding of the ignition characteristics of pre-chamber (PC) combustion engines, computational fluid dynamics (CFD) simulations were conducted using CONVERGE. To assist the initial design of the KAUST pre-chamber engine experiments, the primary focus of the present study was to assess the impact of design parameters such as throat diameter, nozzle diameter, and nozzle length. The well-stirred reactor combustion model coupled with a methane oxidation mechanism reduced from GRI 3.0 was used. A homogeneous charge of methane and air with λ = 1.3 on both the PC and main chamber (MC) was assumed. The geometrical parameters were shown to affect the pre-chamber combustion characteristics, such as pressure build-up, radical formation, and heat release as well as the composition of the jets penetrating and igniting the main chamber charge. In addition, the backflow of species pushed inside the pre-chamber due to the flow reversal (FR) event was analyzed. It was found that the narrow throat type of pre-chamber is strongly influenced by the throat diameter, but weakly influence by nozzle length. A flow reversal pattern was observed, which promoted the accumulation of intermediate species in the PC, leading to a secondary heat release.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

CFD-Aided Design of an Airbox for Race Cars

2002-01-2167

View Details

TECHNICAL PAPER

A Review of Turbulent Combustion Modeling for Multidimensional In-Cylinder CFD

2005-01-0993

View Details

TECHNICAL PAPER

Transonic Combustion: Model Development and Validation in the Context of a Pressure Chamber

2012-01-0155

View Details

X