Browse Publications Technical Papers 2020-01-0831
2020-04-14

Identifying the Driving Processes of Diesel Spray Injection through Mixture Fraction and Velocity Field Measurements at ECN Spray A 2020-01-0831

Diesel spray mixture formation is investigated at target conditions using multiple diagnostics and laboratories. High-speed Particle Image Velocimetry (PIV) is used to measure the velocity field inside and outside the jet simultaneously with a new frame straddling synchronization scheme. The PIV measurements are carried out in the Engine Combustion Network Spray A target conditions, enabling direct comparisons with mixture fraction measurements previously performed in the same conditions, and forming a unique database at diesel conditions. A 1D spray model, based upon mass and momentum exchange between axial control volumes and near-Gaussian velocity and mixture fraction profiles is evaluated against the data. The 1D spray model quantitatively predicts the main spray characteristics (average mixture fraction and velocity fields) within the measurement uncertainty for a wide range of parametric variations, verifying that a Diesel spray becomes momentum controlled and has a Gaussian profile. A required input to the model is the jet angle, which is obtained experimentally. Although an expected result for a gas jet, this is the first time that combined datasets of velocity and mixture fraction have been obtained in vaporizing sprays at Diesel conditions (900 K, 60 bar). Finally, these results show that a consistent database can be built using advanced diagnostics performed by different institutions when the boundary conditions are well known as prescribed by the ECN Spray A framework.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Interaction between Fuel Jets and Prevailing Combustion During Closely-Coupled Injections in an Optical LD Diesel Engine

2019-01-0551

View Details

TECHNICAL PAPER

Fuel and Flame Imaging in SI Engines

930871

View Details

TECHNICAL PAPER

Phenomenological Analysis of Injection, Auto-Ignition and Combustion in a Small DI Diesel Engine

2002-01-1161

View Details

X