Browse Publications Technical Papers 2020-01-1006
2020-04-14

Behavioral Study on Passenger and Driver Dynamics Utilizing 14-DOF Half Car Active Suspension System 2020-01-1006

The main aim of the current research work is to investigate the behavior of passenger and driver biomechanics when the vehicle is excited under road irregularities. For this purpose, a 14-degrees of freedom (DOF) human-vehicle-road model was proposed. In addition to that, the ride comfort of the occupant with the aid of active suspension and its influence on other performance indices like suspension working space and road holding were also investigated. Besides sprung mass acceleration, the ride comfort was evaluated with pitching acceleration and occupant’s head acceleration representation. Active suspension based on Proportional Integral Derivative (PID) controller with hydraulic actuator was implemented. Then, the parameters of the PID controller are optimally tuned by adopting genetic algorithm (GA) with the assist of integral time absolute error (ITAE) method. The objective function was obtained by combining the ITAE of tire deflection, suspension deflection and sprung mass motion. Various road profiles such as single bump and random profile were generated and tested on the proposed controller vehicle model to guarantee the robustness. Numerical examples were presented under frequency and time domains to clearly demonstrate the effectiveness of the proposed GAPID-based active suspension system over the passive system. Furthermore, the Seat-To-Head transmissibility ratio (STH) for driver and passenger was established to comprehend the behavior.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Study on Ride Comfort Assessment of Multiple Occupants using Lumped Parameter Analysis

2012-01-0053

View Details

TECHNICAL PAPER

Active Roll Control to Increase Handling and Comfort

2003-01-0962

View Details

TECHNICAL PAPER

A Biodynamic Model for the Assessment of Human Operator Performance under Vibration Environment

2005-01-2742

View Details

X