Browse Publications Technical Papers 2020-01-1532
2020-09-30

Enhancement of Occupant Ride Comfort by GA Optimized PID Control Active Suspension System 2020-01-1532

The main objective of this work is to enhance the occupant ride comfort. Ride comfort is quantified in terms of measuring distinct accelerations like sprung mass, seat and occupant head. For this theoretical evaluation, a 7- degrees of freedom (DOF) human-vehicle-road model was established and the system investigation was limited to vertical motion. Besides, this work also focused to guarantee other vehicle performance indices like suspension working space and tire deflection. A proportional-integral-derivative (PID) controller was introduced in the vehicle model and optimized with the aid of the genetic algorithm (GA). Actuator dynamics is incorporated into the system. The objective function for PID optimization was carried out using root mean square error (RMSE) concept. The severity of various suspension indices and biomechanics responses of the developed model under proposed approach were theoretically analyzed using various road profiles and compared with conventional passive system. Furthermore, this work discussed the seat to head transmissibility ratio (STH) response to examine the severity of whole-body vibration (WBV). Subsequently, the respective performance measures were statistically analyzed using root mean square (RMS) method. The result inferred that the GA-based optimized PID controller enhanced the occupant ride comfort at significant frequencies with guaranteed vehicle stability.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Ergonomic Study of Occupant Seating Using Near-Vertical Posture for Shared Mobility Applications

2020-28-0519

View Details

TECHNICAL PAPER

A New Concept in Cab-Over-Engine Truck Design

751017

View Details

TECHNICAL PAPER

Tractor Air Suspension Design and Tuning

2002-01-3041

View Details

X