Browse Publications Technical Papers 2020-01-1602
2020-10-05

Eco-Friendly Brake-Pads Using Ferritic Stainless-Steel Particles of Varying Sizes: Influence on Performance Properties 2020-01-1602

Metallic particles in brake-friction materials (FMs) play a vital role in improving mainly strength, friction level, thermal conductivity and hence resistance to fade during braking operations. Although Copper was the most efficient and popular metallic ingredient in FMs, it is being phased out because of its proven threat to the aquatic life in the form of wear debris. Hardly any successful efforts are reported in open literature barring few on in the authors’ laboratory. It is well-known that the size and shape of particles affect the performance of composites apart from their type, concentration, etc.
In this paper, Ferritic stainless steel (SS 434) particles were selected as a theme ingredient in two forms, first particulate (SSP) with two sizes, larger (30-45 micron) and smaller (10-20 micron) and also in the form of swarf. The aim was to investigate the size and shape effect of these ingredients when used to manufacture the brake-pads on the performance properties. A series of three multi-ingredient brake-pads with identical composition but differing in the type of SS particles and swarf. The theme ingredients were SS 434 particles (10-20 and 30-45 micron) and SS 434 swarf (Length:1-2 mm, diameter- 50 micron). The developed brake-pads were characterised for physical, mechanical, chemical and thermal properties as per standards. Tribological performance was evaluated on full-scale inertia dynamometer by following JASO C406 standards.
Results indicated that most of the tribological properties best for pads with smaller sized SSPs and the poorest with swarf (SSS). The topography of worn brake-pads was studied using a scanning electron microscopy (SEM). Finally, overall performance was analyzed by using the ‘Multiple Objective Optimizations by Ratio Analysis (MOORA) technique.’

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Controlling the Performance of Copper-Free Brake-Pads by Varying Size of Graphite Particles

2020-01-1604

View Details

TECHNICAL PAPER

An Investigation of the Role of Wear and Friction Film Influencing the Friction Coefficient of Brakes: Mechanism of Brake Fade

2020-01-1630

View Details

TECHNICAL PAPER

The Heat Transfer Effects of Nanotube Surfaces Treatments and a Means for Growing the Nanotube Coated Surfaces

2006-01-3067

View Details

X