Browse Publications Technical Papers 2020-01-5060
2020-06-09

Hydrogenated Vegetable Oil in Injection Systems: A Tribological Study 2020-01-5060

The aim of this paper is the assessment of the possible impacts of eco-friendly fuels on injection systems by conducting tribological model tests. In this regard, lubricity (High-Frequency Reciprocating Rig, HFRR), scuffing load at different temperatures, and oxidation stability of different fuels B7, R33, pure HVO, and commercial-grade HVO diesel fuel have been deeply investigated.
As a result of our study, the HFRR wear scar diameter (WSD) shows no distinct temperature dependence for both fossil-based diesel fuels (B7 and R33). In contrast, vegetable-based ones (pure HVO and commercially available HVO-based fuel) reveal lower lubricity with a trend to higher HFRR value when the temperature is increased. The commercial HVO fuel shows, compared to the pure HVO, better HFRR values at all tested temperatures. Nevertheless, all HFRR values still stay within the limits set by the relevant fuel standards EN 590 and ASTM D975.
For all fuels, the scuffing load clearly depends on the temperature. B7 shows the highest and pure HVO the lowest scuffing load for all tested temperatures. At higher temperatures, commercially available HVO shows a similar, or even better, behavior compared to R33. The results indicate that there is no or only weak correlation between the HFRR and the scuffing load. This correlation obviously varies with fuel grades, additives, and other added substances.
HVO shows excellent oxidation stability due to its pure paraffinic character. Fossil fuels are less stable because aromatic hydrocarbons are much easier to crack than paraffins.
Combustion engines will continue to play an important role until the electrification of transportation is fully established. Our results show that alternative fuels like R33 and HVO represent good alternatives for fossil fuels in diesel engines.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

An Experimental Investigation on the Combustion, Performance and Emissions of a Diesel Engine Using Vegetable Oil-Diesel Fuel Blends

2011-01-1187

View Details

TECHNICAL PAPER

1D Modeling of Alternative Fuels Spray in a Compression Ignition Engine Using Injection Rate Shaping Strategy

2019-24-0132

View Details

TECHNICAL PAPER

Effects of Oxygenated Organic Compounds-neem Oil Blends on the Performance and Exhaust Emissions of a DI Diesel Engine

2011-01-0331

View Details

X