Browse Publications Technical Papers 2020-24-0004
2020-09-27

Simulation Study on the Use of Argon Mixtures in the Pressurized Motored Engine for Friction Determination 2020-24-0004

Mechanical friction and heat transfer in internal combustion engines are two highly researched topics, due to their importance on the mechanical and thermal efficiencies of the engine. Despite the research efforts that were done throughout the years on both these subjects, engine modeling is still somewhat limited by the use of sub-models which do not fully represent the phenomena happening in the engine. Developing new models require experimental data which is accurate, repeatable and which covers wide range of operation. In SAE 2018-01-0121, the conventional pressurized motored method was investigated and compared with other friction determination methods. The pressurized motored method proved to offer a good intermediate between the conventional motored tests, which offer good repeatability, and the fired tests which provide the real operating conditions, but lacks repeatability and accuracy. A ‘shunt pipe’ was utilized between the intake and exhaust manifolds which reduced significantly the air supply demand. In SAE 2019-01-0930, Argon was used in place of air in the experimental setup which resulted in bulk gas temperatures synonymous to the fired engine. In SAE 2019-24-0141 and SAE 2020-01-1063 mixtures between air and Argon were utilized to investigate the relationship of mechanical friction with a controlled gradual increase in the bulk in-cylinder temperature. In this publication, a one-dimensional engine model is developed to assess the capability of the 1D model to capture the effects on the motored engine imposed by changing the working gas. From the experimental studies on the pressurized motored engine, increasing the proportion of Argon to air showed an increase in the peak bulk gas temperature of around 600°C. This resulted in an increase in the heat losses, a decrease in the pumping losses and no measureable difference in the mechanical friction.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Real-Time Control-Oriented Mean Value Engine Model Including Manifold Gas Dynamics and Engine Thermals with Parameter Identification for a Toyota Prius

2021-01-0394

View Details

TECHNICAL PAPER

The Determination of Motored Engine Friction by Use of Pressurized ‘Shunt’ Pipe between Exhaust and Intake Manifolds

2018-01-0121

View Details

TECHNICAL PAPER

Integrated Air Supply and Humidification Concepts for Fuel Cell Systems

2001-01-0233

View Details

X