Browse Publications Technical Papers 2020-28-0485
2020-09-25

Modular Design and Analyze of Air Intake Manifold for Formula Vehicle 2020-28-0485

The SAE formula student car organization constrained a rule to place a restrictor of diameter 20mm in between the throttle body and the engine inlet. The restrictor is a component that reduces and regulates the mass flow of air into the engine inlet. For this, a venture nozzle will be used as a restrictor in a vehicle to decrease the air pressure and increase the velocity in the intake manifold. Our proposed work aims to minimize the pressure drop by changing the convergent and divergent angles in the restrictor. For this by using solidworks eight various combinations of models with convergent angle as 13, 15 degrees, and divergent angle as 5,7 degrees was designed and analyzed using CFD fluent in ansys work bench. In this, 13 degree as convergent and 5 degree as a divergent model was found to have laminar airflow throughout with optimum pressure drop. The plenum is a large duct that equalizes the pressure drop caused by the restrictor in order to improve the efficiency of the engine. By varying the shape of the plenum as elliptical, with volume as 1.8, 2.8Litres eight models were designed and analyzed by applying constrains in velocity and pressure of air medium flowing through it. It was found that the elliptical shape of volume 1.8 Liters with a 15degree convergent and 7degree divergent angle was suitable to maintain effective output and response of the engine. Therefore, the proposed model of restrictor and plenum will be recommended for the nominal response of the engine without affecting the efficiency.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Numerical Study of the Maximum Impact on Engine Efficiency When Insulating the Engine Exhaust Manifold and Ports during Steady and Transient Conditions

2020-37-0002

View Details

TECHNICAL PAPER

Study of a Two-Degree-of-Freedom Exhaust System

900164

View Details

TECHNICAL PAPER

Transient Correction by Manifold Pressure in a TPS-Free FI System

2014-32-0072

View Details

X