Browse Publications Technical Papers 2020-28-0498
2020-09-25

Investigation on Design and Analysis of Passenger Car Body Crash-Worthiness in Frontal Impact Using Radioss 2020-28-0498

Increasing advancement in automotive technologies ensures that many more lightweight metals become added to the automotive components for the purpose of light weighting and passenger safety. The accidents are unexpected incidents most drivers cannot be avoided that trouble situation. Crash studies are among the most essential methods for enhancing automobile safety features. Crash simulations are attempting to replicate the circumstances of the initial crash. Frontal crashes are responsible for occupant injuries and fatalities 42% of accidents occur on frontal crash. This paper aims at studying the frontal collision of a passenger car frame for frontal crashes based on numerical simulation of a 35 MPH. The structure has been designed to replicate a frontal collision into some kind of inflexible shield at a speed of 15.6 m/s (56 km/h). The vehicle’s exterior body is designed by CATIA V5 R20 along with two material properties to our design. The existing Aluminum alloy 6061 series is compared with carbon fiber IM8 material. The simulation is being carried out by us in the “Radioss” available in “Hyper mesh 17.0” software. The energy conservation and momentum energy absorption are carried out from this dynamic structural analysis.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Dynamic Biaxial Tissue Properties of Pregnant Porcine Uterine Tissue

2008-22-0007

View Details

TECHNICAL PAPER

A Stochastic Approach for Occupant Crash Simulation

2000-01-1597

View Details

TECHNICAL PAPER

Crash Compatibility of the Ultralight Steel Auto Body with Cars of the Same Size

2000-01-2717

View Details

X