1980-02-01

Axisymmetric Flow Model in a Piston-Cylinder Arrangement with Detailed Analysis of the Valve Region 800286

The flow in an axisymmetric piston-cylinder configuration has been studied by means of a novel technique that solves the Navier-Stokes equations in two domains: one fixed and another stretching and compressing. The valve has been simulated as an infinitesimally thin “plate” in which the law of the wall is used for the calculations of the radial velocity and the turbulent kinetic energy. Both two- and four-stroke calculations with heat transfer have been performed. In the two-stroke calculations, the valve was kept at a fixed location. In the four-stroke calculations, the valve moves in the fixed domain with a velocity profile corresponding to a cam with valve overlap. This procedure has the advantage that the exact location of the valve is known at any time. The turbulence is generated by the intake stroke which shows a recirculation zone behind the valve. During the compression stroke, the cylinder wall eddy formed during the intake stroke still persists but it is damped. During the expansion or power stroke, the piston drives the flow and the velocity and turbulent kinetic energy contours are almost uniform.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Thermodynamic implications of the Stiller-Smith Mechanism

870615

View Details

TECHNICAL PAPER

Optimization of Exhaust Manifold for a Multicylinder Turbocharged Two-Stroke Diesel Engine

2000-01-0584

View Details

TECHNICAL PAPER

A Rational Approach for Calculation of Heat Transfer in Diesel Engines

720027

View Details

X