1996-10-01

Application of Computational Fluid Dynamics to the Study of Conditions Relevant to Autoignition Damage in Engines 961963

The process of autoignition in an internal combustion engine cylinder produces large amplitude high frequency gas pressure waves accompanied by significant increases in gas temperature and velocity, and as a consequence large convective heat fluxes to piston and cylinder surfaces. Extended exposure of these surfaces to autoignition, results in their damage through thermal fatigue, particularly in regions where small clearances between the piston and cylinder or cylinder head, lie in the path of the oscillatory gas pressure waves.
The ability to predict spatial and temporal' variations in cylinder gas pressure, temperature and velocity during autoignition and hence obtain reasonable estimates of surface heat flux, makes it possible to assess levels of surface fatigue at critical zones of the piston and cylinder head, and hence improve their tolerance to autoignition.
In this paper Computational Fluid Dynamics (CFD) has been used to study conditions of severe autoignition in a spark ignition engine, particularly in regions where piston to cylinder or cylinder head clearances are small. It is shown that very high pressures are generated in regions of small clearance as supersonic pressure waves are decelerated as they enter these spaces.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Modeling the Combustion in a Small-Bore Diesel Engine Using a Method Based on Representative Interactive Flamelets

1999-01-3550

View Details

JOURNAL ARTICLE

Modeling of Oil Transport between Piston Skirt and Cylinder Liner in Internal Combustion Engines

2019-01-0590

View Details

TECHNICAL PAPER

Warm-Up Characteristics of Surface Temperatures in an I.C. Engine Measured by Thermal Imaging Technique

920187

View Details

X